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1. INTRODUCTION 

In recent years, human pose detection has gained significant 

attention owing to its usefulness in fitness training, sports 

analysis, rehabilitation, and human-computer interaction 

[1][2][3]. With more people turning to online workouts and 

home fitness routines, the need for real-time posture correction 

systems has become increasingly relevant. Many people 

perform exercises with improper form, especially without a 

physical trainer to guide them, which can lead to long-term 

injuries or reduce the effectiveness of their workout. We 

explored the use of vision-based pose estimation without 

sensors or wearables [4][5], so that anyone with a normal 

camera can obtain posture feedback. MediaPipe, a framework 

developed by Google, allows the detection of body keypoints in 

real time and is light enough to run on personal devices [7][8]. 

Instead of building a complex ML model from scratch, we used 

MediaPipe's pose solution to extract key joint landmarks, such 

as the neck, shoulders, elbows, and knees, during a workout 

session. The main idea is to detect when a person is exercising 

with incorrect angles or postures using only keypoints from a 

camera feed [6][9][10]. We calculated the angles between 

specific joints and compared them with reference angles that 

defined the correct posture for that workout. If the angle is 

outside the safe or expected range, an alert is generated to warn 

the person in real time. This helps users become aware of their 

mistakes while performing the exercise without the need for a 

coach. In this study, we present a functional system using 

MediaPipe to detect exercise posture and identify bad form. The 

system works in real time and provides alerts when the joint 

angles are not as expected. Our approach aims to make posture 

correction more accessible for people who work out alone or 

want quick feedback on their form using only a webcam. [13] 

 

2. Related Works 

Sun et al., in Deep High-Resolution Representation Learning 

for Human Pose Estimation [3], proposed HRNet, which 

maintains high-resolution representations throughout the 

network using multi-resolution parallel subnetworks. It 

performed well on the COCO and MPII datasets, especially 

with small inputs, but plateaued on the MPII dataset. This study 

sets the stage for future dense prediction tasks with more 

efficient fusion. The AthletePose3D dataset paper [16] 

addressed the limitations of existing datasets by collecting over 

1.3 million frames across 12 sports. Using models such as 

ViTPose and ProHMR, the 2D and 3D performances were 

benchmarked, showing good alignment with motion capture but 

noted velocity estimation gaps. This study targets pose 

estimation in high-speed sports, suggesting the need for further 

validation. A wearable sensor-based approach proposed a 

random forest-long short-term memory (RFL) hybrid [4] using 

accelerometer and magnetometer data to classify eight physical 

therapy exercises. RFL generated temporal and probabilistic 

features that outperformed the other ML and deep models. 

Challenges included sensor variability, noise, and 

computational scaling, although the method showed promise for 

non-vision-based home therapy. 

In Real-Time Posture Monitoring and Risk Assessment, Sarkar 

et al. [7] combined MediaPipe with LSTM to classify safe and 

unsafe lifting postures from videos. Their custom dataset 

enabled real-time feedback for preventing injuries. This study 

acknowledges the challenges of dataset diversity, 

personalisation, and environmental variation. 

A single-camera exercise classifier using BlazePose and 

MediaPipe [5][6] trained CNNs on extracted joint keypoints 

from smartphone videos of lower back and shoulder therapy 

exercises. Despite promising results, the limitations included 

the use of only healthy subjects and limited camera angles. 

Future studies will explore smartphone-based deployments. 

Xu et al. proposed Poseidon [14], a ViTPose-based transformer 

architecture for multiframe pose estimation. It uses adaptive 

frame weighting, multi-scale feature fusion, and cross-attention 

to enhance temporal consistency and spatial detail. Although it 

outperformed models such as DiffPose and DSTA on 

PoseTrack21, challenges in occlusion handling and 

computational efficiency remain. 

SitPose introduced a real-time sitting posture monitoring 

system [8][12] using Azure Kinect and ensemble learning 

(SVM, DT, and MLP). It classified seven postures and provided 

live feedback in various environments. Although effective, the 

system faced issues with desk occlusions and relied on fixed 

camera placement for consistent performance. 

 

3. PROPOSED METHODOLOGY 

The methodology involves real-time pose estimation using 

MediaPipe to detect and monitor body posture during physical 

activity. It focuses on calculating joint angles from selected 

body landmarks and issuing alerts when the posture deviates 

from the defined correct form ranges. 

The proposed method system architecture is shown in Figure 1. 

Step 1: System Initialisation and User Engagement 

The user activates the system, establishes webcam access, and 

prepares the video capture pipeline. 

Step 2: Real-Time Video Capture and Landmark Detection 

The system uses a webcam as a sensing device to continuously 

capture real-time videos. At each frame, human pose landmarks 

(e.g., joints) were detected using a pose estimation algorithm. 

Step 3: Visualisation of Video Feed and Detected Landmarks 

The captured video frames and overlaid landmarks were 

rendered in real time on the user interface to provide immediate 

visual feedback. 

Step 4: Computation of Joint Angles and Data Logging 

The system computes the relevant joint angles from the 

detected landmarks. These angle values were logged 

sequentially and recorded in a structured log for analysis. 

Step 5: Storage in Log Database 

The generated logs, which contain timestamped angle 

measurements, are saved in a database to support historical 

tracking and machine learning. 

Step 6: Machine Learning-Based Posture Classification 

The recorded angle data serve as input to a trained Random 

Forest Classifier, which evaluates and classifies the user’s 

posture in real time. 
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Figure 1: System architecture of the proposed method. 

 

 

Step 7: Real-Time Posture Visualisation 

A live posture status graph or dashboard displays the 

classification results, indicating whether the user’s posture falls 

within acceptable bounds. 

Step 8: Threshold Evaluation 

The system checks the classifier outputs against predefined 

angle thresholds to determine whether the posture deviation 

exceeds the acceptable limits. 

Step 9: Alarm Notification 

When the detected joint angles surpass threshold levels 

indicative of poor posture, the system triggers an audible alert 

to notify the user and prompt corrective action, and 

automatically, the detected posture will be captured for up to 

five images. 

 

A summary of Figure 1 is given in Table 1. 
 

Table 1: Summary table of the approach model system architecture 
 

Step Description 

1 Application launch and webcam initialisation 

2 Continuous video capture and pose landmark detection 

3 Real-time display of video with overlaid landmarks 

4 Computation of joint angles and logging of results 

5 Storage of logs in a database 

6 Posture classification via Random Forest Classification model 

7 Presentation of posture status in a live graph 

8 Evaluation of posture against predefined thresholds 

9 Alarm notification upon threshold breach and capturing the image of the breach angles 

 

Figure 2 shows the overall working structure of the posture monitoring system, which is divided into three layers. Each layer has its 

own purpose, starting from how data is collected, how it is processed, and finally how the user interacts with the system. 

 

Application Layer 

This layer directly connects with the user, and it displays the important outputs simply- 

a) If someone sits or stands incorrectly, the system immediately displays the bad posture and even saves an image of it for later 

review. 

b) It creates graphs and analytics to show posture patterns over time, which helps the user understand their daily habits. 

c) If bad posture continues, the system plays an alarm or notification as a reminder to correct it.   

d) It can also stream live video with posture detection so that users can watch themselves in real time. 
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Figure 2: Three-layered system architecture 
 

 

Processing Layer 

This layer does most of the technical work. Once the camera captures the user, the system performs the following- 

a) It first calculates landmarks, which means identifying important points on the body for shoulders, elbows, hips, and knees. 

b) By using the computer vision algorithms, the model detects the overall pose. 

c) After that, the angles of different body joints are measured and stored in a file (CSV format), so this data can be used later for 

analysis or model training. 

 

Ingestion and Training Model Layer 

In this layer, the data and machine learning work for the system. The following details were performed by this layer- 

a) The posture data collected (images, angles, positions) is first gathered as raw data. 

b) This data is then pre-processed, meaning it is cleaned and organised so that it can be used effectively. 

c) With this prepared data, a machine learning model of a random forest classifier is trained to identify and classify postures as 

good or bad. 

d) All the processed data and trained models are stored in a data catalogue, which serves as a central storage for further 

improvement and retraining of the system. 
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Database (Raw Data Storage) 

At the very bottom of the three-layered architecture, there is a 

database that stores the raw data used for training the machine 

learning model. This is the foundation of the whole system 

because the accuracy of posture detection depends heavily on 

the quality of data collected. The raw database contains 

information as follows- 

a) The angles for the landmarks for the human body with pre-

process data only, according to the requirements of the 

model. 

b) Detected body landmarks like shoulders, elbows, and 

knees. 

c) Calculated joint angles of the body in degrees. 

d) Labels that indicate whether the posture is good or bad. 

These raw data were not directly used for training. Instead, it 

first goes through a pre-processing stage, where unnecessary 

noise is removed, and all the information is structured properly. 

Only after this cleaning process, the data were sent for model 

training. 

In simple terms, this database acts as a storage warehouse that 

keeps all raw posture-related data safe. Without it, the system 

would not have the historical information required to train, 

validate, and improve the posture detection model. 

The process begins with loading a dataset containing joint 

angles and labelled posture data, which serves as part of the 

pre-processing stage. A machine learning model was then 

trained on this dataset and evaluated for accuracy. If the results 

are unsatisfactory, retraining is performed until the desired 

performance is achieved. Once the model reaches an acceptable 

accuracy, it is exported for deployment in real-time monitoring. 

The trained model was integrated with a computer vision 

algorithm to analyse live video streams, where it classifies 

postures and displays the corresponding body angles. The 

system uses colour indicators: green for good posture and red 

for bad posture. In cases of poor posture, an alarm was 

triggered, and both the angles and screenshots were recorded 

for later analysis. The monitoring session concluded when the 

user ended the program. 
 

Figure 3: Flowchart of the purpose method 
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Algorithm: Posture Detection and Correction System 

Input: Posture dataset (joint angles, labels) 

Output: Posture classification (Good/Bad), Alerts, Recorded log 

data, Real-time graph. 

1. Begin 

2. The posture dataset is loaded. 

3. Pre-processing (cleaning, normalisation, feature 

extraction). 

4. The machine learning model was trained on the processed 

dataset. 

5. The model was evaluated using accuracy metrics. 

6. If the accuracy is lower than the desired accuracy metrics, 

return to step 4 and retrain. 

7. The trained model was exported. 

8. The trained model was integrated with computer vision for 

real-time monitoring. 

9. Capture body landmarks and calculate joint angles from 

the live video. 

10. The detected posture is displayed with the corresponding 

angles. 

11. If posture = good, it is highlighted in green. 

12. If posture = bad, highlight in red, trigger an alarm, and 

save the posture details with screenshots. 

13. Steps 9–12 were repeated until the system stopped. 

14. End 

 

Pseudocode 

BEGIN 

LOAD dataset 

PREPROCESS dataset 

TRAIN model with dataset 

CALCULATE accuracy 

IF (accuracy > = threshold) 

EXPORT trained model 

ELSE 

RETRAIN the model 

INTEGRATE the trained model with computer vision 

WHILE system is running: 

CAPTURE frame from webcam 

DETECT landmarks and CALCULATE joint angles 

DISPLAY posture with angles 

IF posture == "Good": 

SHOW "Green" 

ELSE IF posture == "Bad": 

SHOW "Red" 

TRIGGER alarm 

SAVE angles and CAPTURE screenshot 

END WHILE 

END 

 

3.1 Pose Detection using MediaPipe 

MediaPipe Pose was used to detect 33 body landmarks and 31 

landmarks per frame from a live camera feed [7][8][9]. Each 

landmark includes normalised x and y coordinates and a 

visibility score. For posture detection, only a subset of 

keypoints was utilised: shoulders, elbows, knees, and an 

estimated neck point derived from the midpoint between the 

shoulder and ear landmarks. This configuration is sufficient for 

analysing upper- and lower-body exercises, such as squats, 

push-ups, and shoulder raises. To maintain consistency, 

visibility scores were used to ignore unreliable detections when 

the body parts were occluded or poorly lit. 

 

3.2 Joint Angle Calculation 

Joint angles are essential for analysing postures. Each angle 

was formed using three consecutive points representing two 

vectors. For instance, the left elbow angle is calculated from the 

positions of the left shoulder, elbow, and wrist, and is given by 

Equation 1. 

Ө(𝑡ℎ𝑒𝑡𝑎) = 𝑐𝑜𝑠−1 (
𝑢⃗ ⋅ 𝑣 

‖𝑢⃗ ‖ ⋅ ‖𝑣 ‖
) 

       

                                                                                  (1) 

Were, 

u. v is the dot product of vectors u and v 

||u|| is the Euclidean norm (magnitude) of vector u 

||v|| is the Euclidean norm (magnitude) of vector v 

 

3.2.1 Key Joint Configurations 

For each monitored posture: 

1. The elbow angles were calculated as neck → shoulder → 

elbow → wrist. 

2. Shoulder-neck alignment was estimated using shoulder and 

mid-ear landmarks. 

3. Neck tilt was assessed by comparing the vertical 

displacement between the ears. 

In scenarios where the user turns or shifts, the landmark 

stability is enhanced by averaging the positions over recent 

frames. 

 

3.2.2 Temporal Smoothing 

Temporal smoothing focuses on stabilising joint angle 

calculations over time to avoid noisy or jittery outputs caused 

by frame-wise fluctuations in pose estimation. Single-frame 

detection often produces inconsistent results owing to 

occlusions, motion blur, or rapid movements. These 

inconsistencies can mislead posture classification if the joint 

angles are calculated independently at every frame. To reduce 

this variability, a basic temporal filter was applied using a 

sliding window average over a fixed number of recent frames. 

Let 𝑡 be the raw joint angle at frame 𝑡. The smoothed joint 

angle Ө is calculated using Equation 2. 

 

Ө𝑠𝑚𝑜𝑜𝑡ℎ(𝑡) =
1

𝑁
∑ Ө

𝑡

𝑖=𝑡−𝑁+1

(𝑖) 

 

                                                                                       (2)  

Here, 

𝑁 is the window size, typically between 3 and 7 frames for real-

time feedback. This moving average reduces sudden spikes or 
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drops in the angle values, providing a more stable estimate for 

comparison with the reference postures. 

 

3.3 Alert 

Incorrect posture triggers immediate audio alerts to help users 

correct their form without delay. A beeping sound is generated 

if a joint remains out of range for a set number of frames. This 

helps maintain focus without needing to constantly view the 

screen, and at the same time, automatic screenshots of the bad 

posture will be captured. 

 

4. RESULT  

From the output, the system successfully detected the person 

and keypoints in correct positions such as head, shoulders, 

elbows, wrists and knees. The majority of the keypoints align 

well with the actual joint positions in the image, showing good 

model accuracy in pose estimation. The model achieved an 

average keypoint detection confidence score of 0.84, where 

higher confidence is observed in larger body joints like 

shoulders (above 0.9), while lower confidence is seen in smaller 

joints (around 0.75–0.8). The Percentage of Correct Keypoints 

(PCK@0.5) was estimated at 92% [3][9][14]. The Mean 

Average Precision (mAP) for this single frame was 

approximately 0.88, indicating a strong pose localisation 

performance. There was a small variation in accuracy for 

symmetrical limbs, and the left knee was detected with slightly 

less precision (confidence 0.78) than the right knee (confidence 

0.85).  It was able to capture joint angle data across different 

body movements and provide clear feedback when the 

measured angles were outside the predefined correct range. 

During evaluation, the detection process maintained a stable 

measurement rate with minimal frame drops and consistent 

tracking of key joint positions across sequences. The angle 

measurement algorithm showed a high level of consistency 

between repeated movements, with less than 3–5° of variation 

in most controlled repetitions. When the posture deviated from 

the target range, the notification system was triggered with a 

delay of 5 s, allowing for corrective feedback. In movements, 

such as bending or arm lifts, the accuracy slightly decreased 

owing to rapid joint transitions; however, a recognition rate 

above 90% was maintained for detecting out-of-range 

conditions [12][13][15]. The detection sensitivity was effective 

in identifying even minor deviations, such as 5°–7° 

misalignment, which will be particularly beneficial for 

precision-based activities, such as rehabilitation exercises or 

yoga, as shown in Table 2. From Table 2, we can see that the 

angle detection was mostly accurate when the participant was 

standing at a normal distance from the camera. When the 

subject was too far, the accuracy decreased slightly, and the 

notification was sometimes triggered late. In close range, the 

accuracy improved, but sometimes the system became too 

sensitive, resulting in early notifications. 

 
Table 1: Performance Analysis 

 

Condition / Test Case 
Avg. Angle 

Detection Error (°) 

Notification Trigger 

Accuracy (%) 

Detection Delay 

(sec) 
Remarks 

Normal distance, good light 2.5° 96% 0.4 Very stable, almost no false alerts 

Normal distance, low light 4.2° 91% 0.5 Slightly less accurate in angles 

Far distance (>3m) 5.8° 88% 0.6 Delay noticed, some late triggers 

Close range (<1m) 2.1° 94% 0.3 Good accuracy, but some over-sensitivity 

Fast movement 3.9° 90% 0.7 Slight lag, but still functional 

 
Table 2: Pose Angle Detection & Notification System 

 

Metric / Parameter Observed Value Expected / Ideal Value Interpretation 

Average detection accuracy 93% ≥ 95% 
Slight drop in accuracy due to background variation and 

occasional occlusion. 

Mean angular error (degrees) 3.2° ≤ 2° 
Small deviations, potentially caused by varied lighting and 

clothing types. 

Notification trigger accuracy 91% ≥ 90% 
The system reliably alerts when pose angles exceed the 

correct range. 

False positive rate 5% ≤ 3% 
Slightly higher than expected; occasional alerts for 

borderline angles. 

Average processing time per frame 0.28s ≤ 0.30s Meets near real-time requirement. 

System uptime reliability 99.2% ≥ 99% High operational stability throughout the testing period. 

 

Table 3 presents the human pose estimation perspective, and 

the main strength here is the stable angle calculation from key 

joints. The method focuses on capturing raw angle values; 

therefore, it is more lightweight and can work in a limited 

hardware environment. The accuracy is sufficient for practical  

use, such as exercise monitoring or rehabilitation, but for very  

 

precise clinical needs, the angular error could be reduced 

further. False-positive alerts could also be minimised by adding 

a small tolerance margin before triggering. Figures 4 (a) to 4 (c) 

show the live graphs captured while performing squatting, 

standing, and walking. 
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Figure 4: (a) Squatting                        Figure: 4(b)Standing                        Figure: 4(c)Walking 

 

Figure 5 shows the correlation heatmap of joint angles, which 

reveals that most joints show weak or negligible correlations, 

indicating independent movement patterns. However, a very 

strong positive correlation (0.93) was observed between the left 

and right knees, reflecting their natural symmetrical movements 

during postural changes. Moderate correlations were also noted 

between the neck and knees (~0.34–0.36), suggesting alignment 

between the head position and leg posture. 
 

Figure 5: Correlation Heatmap 
 

 
 

Table 3: Accuracy Metrics 
 

Action Precision Recall F1-score 

Standing 1.00 0.99 0.99 

Walking 0.98 0.98 0.98 

Squatting 0.92 1.00 0.96 

 

The performance of the proposed posture detection system was 

evaluated using a confusion matrix and classification report, as 

shown in Table 4. The model was trained to classify three 

postures: Squatting, Standing, and Walking. The overall model 

accuracy was 98.56%. The parameters for the accuracy metrics 

were calculated using the following equations: 

 

 

 

 
Were: 

TP: True Positive 

TN: True Negative 

FP: False Positive 

FN: False Negative 

Accuracy is given by Equation 3, which measures the overall 

correctness of the model by calculating the proportion of 

correctly classified instances (True Positives + True Negatives) 

out of the total number of predictions. 

Precision is given by Equation 4, which indicates how many of 

the instances predicted as positive are actually correct. This is 

particularly important for reducing false positives. 

Recall is given by Equation 5, which measures the ability of the 

model to identify all relevant instances. It calculates the 

proportion of actual positives that were correctly predicted, 

thereby reducing the number of false negatives. 

The F1 Score is given by Equation 6, and it is the harmonic 

mean of Precision and Recall. It provides a balanced measure, 

especially when the dataset has an uneven class distribution, by 

considering both the false positives and false negatives. 

 

5. DISCUSSION 

The results clearly show that the system is effective in detecting 

posture deviations using angle-based analysis. The high 

precision and recall values indicate that the algorithm 

consistently identified both correct and incorrect sitting 

positions across different conditions. The minimal drop in 

accuracy under varied lighting and background conditions 

suggests that the model's performance is not heavily dependent 

on environmental factors. However, the detection time may 

slightly increase in scenarios with significant occlusion, such as 
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when the user’s arms block the camera view, which could be 

addressed in future studies. The overall findings confirm that 

the angle threshold approach is both computationally efficient 

and accurate for real-time posture monitoring applications. 
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