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1. INTRODUCTION

In recent years, human pose detection has gained significant
attention owing to its usefulness in fitness training, sports
analysis, rehabilitation, and human-computer interaction
[17[2][3]. With more people turning to online workouts and
home fitness routines, the need for real-time posture correction
systems has become increasingly relevant. Many people
perform exercises with improper form, especially without a
physical trainer to guide them, which can lead to long-term
injuries or reduce the effectiveness of their workout. We
explored the use of vision-based pose estimation without
sensors or wearables [4][5], so that anyone with a normal
camera can obtain posture feedback. MediaPipe, a framework
developed by Google, allows the detection of body keypoints in
real time and is light enough to run on personal devices [7][8].
Instead of building a complex ML model from scratch, we used
MediaPipe's pose solution to extract key joint landmarks, such
as the neck, shoulders, elbows, and knees, during a workout
session. The main idea is to detect when a person is exercising
with incorrect angles or postures using only keypoints from a
camera feed [6][9][10]. We calculated the angles between
specific joints and compared them with reference angles that
defined the correct posture for that workout. If the angle is
outside the safe or expected range, an alert is generated to warn
the person in real time. This helps users become aware of their
mistakes while performing the exercise without the need for a
coach. In this study, we present a functional system using
MediaPipe to detect exercise posture and identify bad form. The
system works in real time and provides alerts when the joint
angles are not as expected. Our approach aims to make posture
correction more accessible for people who work out alone or
want quick feedback on their form using only a webcam. [13]

2. Related Works

Sun et al., in Deep High-Resolution Representation Learning
for Human Pose Estimation [3], proposed HRNet, which
maintains high-resolution representations throughout the
network using multi-resolution parallel subnetworks. It
performed well on the COCO and MPII datasets, especially
with small inputs, but plateaued on the MPII dataset. This study
sets the stage for future dense prediction tasks with more
efficient fusion. The AthletePose3D dataset paper [16]
addressed the limitations of existing datasets by collecting over
1.3 million frames across 12 sports. Using models such as
ViTPose and ProHMR, the 2D and 3D performances were
benchmarked, showing good alignment with motion capture but
noted velocity estimation gaps. This study targets pose
estimation in high-speed sports, suggesting the need for further
validation. A wearable sensor-based approach proposed a
random forest-long short-term memory (RFL) hybrid [4] using
accelerometer and magnetometer data to classify eight physical
therapy exercises. RFL generated temporal and probabilistic
features that outperformed the other ML and deep models.
Challenges included sensor variability, noise, and
computational scaling, although the method showed promise for
non-vision-based home therapy.

In Real-Time Posture Monitoring and Risk Assessment, Sarkar
et al. [7] combined MediaPipe with LSTM to classify safe and
unsafe lifting postures from videos. Their custom dataset
enabled real-time feedback for preventing injuries. This study
acknowledges the challenges of dataset diversity,
personalisation, and environmental variation.

A single-camera exercise classifier using BlazePose and
MediaPipe [5][6] trained CNNs on extracted joint keypoints
from smartphone videos of lower back and shoulder therapy
exercises. Despite promising results, the limitations included
the use of only healthy subjects and limited camera angles.
Future studies will explore smartphone-based deployments.

Xu et al. proposed Poseidon [14], a ViTPose-based transformer
architecture for multiframe pose estimation. It uses adaptive
frame weighting, multi-scale feature fusion, and cross-attention
to enhance temporal consistency and spatial detail. Although it
outperformed models such as DiffPose and DSTA on
PoseTrack21, challenges in occlusion handling and
computational efficiency remain.

SitPose introduced a real-time sitting posture monitoring
system [8][12] using Azure Kinect and ensemble learning
(SVM, DT, and MLP). It classified seven postures and provided
live feedback in various environments. Although effective, the
system faced issues with desk occlusions and relied on fixed
camera placement for consistent performance.

3. PROPOSED METHODOLOGY

The methodology involves real-time pose estimation using
MediaPipe to detect and monitor body posture during physical
activity. It focuses on calculating joint angles from selected
body landmarks and issuing alerts when the posture deviates
from the defined correct form ranges.

The proposed method system architecture is shown in Figure 1.
Step 1: System Initialisation and User Engagement

The user activates the system, establishes webcam access, and
prepares the video capture pipeline.

Step 2: Real-Time Video Capture and Landmark Detection

The system uses a webcam as a sensing device to continuously
capture real-time videos. At each frame, human pose landmarks
(e.g., joints) were detected using a pose estimation algorithm.
Step 3: Visualisation of Video Feed and Detected Landmarks
The captured video frames and overlaid landmarks were
rendered in real time on the user interface to provide immediate
visual feedback.

Step 4: Computation of Joint Angles and Data Logging

The system computes the relevant joint angles from the
detected landmarks. These angle values were logged
sequentially and recorded in a structured log for analysis.

Step 5: Storage in Log Database

The generated logs, which contain timestamped angle
measurements, are saved in a database to support historical
tracking and machine learning.

Step 6: Machine Learning-Based Posture Classification

The recorded angle data serve as input to a trained Random
Forest Classifier, which evaluates and classifies the user’s
posture in real time.

370 © 2026 Laishram Trinity, S Athisii Kayina, Usham Sanjota Chanu. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/



https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi. PEER-REVIEWED JOURNAL Volume 5 Issue 1 [Jan- Feb] Year 2026

Figure 1: System architecture of the proposed method.
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Step 7: Real-Time Posture Visualisation

A live posture status graph or dashboard displays the
classification results, indicating whether the user’s posture falls
within acceptable bounds.

Step 8: Threshold Evaluation

The system checks the classifier outputs against predefined
angle thresholds to determine whether the posture deviation
exceeds the acceptable limits.

A

Alarm for thershold
exceeding

Step 9: Alarm Notification

When the detected joint angles surpass threshold levels
indicative of poor posture, the system triggers an audible alert
to notify the user and prompt corrective action, and
automatically, the detected posture will be captured for up to
five images.

A summary of Figure 1 is given in Table 1.

Table 1: Summary table of the approach model system architecture

Step Description
1 Application launch and webcam initialisation
2 Continuous video capture and pose landmark detection
3 Real-time display of video with overlaid landmarks
4 Computation of joint angles and logging of results
5 Storage of logs in a database
6 Posture classification via Random Forest Classification model
7 Presentation of posture status in a live graph
8 Evaluation of posture against predefined thresholds
9 Alarm notification upon threshold breach and capturing the image of the breach angles

Figure 2 shows the overall working structure of the posture monitoring system, which is divided into three layers. Each layer has its
own purpose, starting from how data is collected, how it is processed, and finally how the user interacts with the system.

Application Layer

This layer directly connects with the user, and it displays the important outputs simply-
a) If someone sits or stands incorrectly, the system immediately displays the bad posture and even saves an image of it for later

review.

b) It creates graphs and analytics to show posture patterns over time, which helps the user understand their daily habits.
c) If bad posture continues, the system plays an alarm or notification as a reminder to correct it.
d) It can also stream live video with posture detection so that users can watch themselves in real time.
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Figure 2: Three-layered system architecture
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This layer does most of the technical work. Once the camera captures the user, the system performs the following-
a) It first calculates landmarks, which means identifying important points on the body for shoulders, elbows, hips, and knees.
b) By using the computer vision algorithms, the model detects the overall pose.

c) After that, the angles of different body joints are measured and stored in a file (CSV format), so this data can be used later for

analysis or model training.

Ingestion and Training Model Layer

In this layer, the data and machine learning work for the system. The following details were performed by this layer-
a) The posture data collected (images, angles, positions) is first gathered as raw data.
b) This data is then pre-processed, meaning it is cleaned and organised so that it can be used effectively.

¢) With this prepared data, a machine learning model of a random forest classifier is trained to identify and classify postures as

good or bad.

d) All the processed data and trained models are stored in a data catalogue, which serves as a central storage for further

improvement and retraining of the system.
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Database (Raw Data Storage)
At the very bottom of the three-layered architecture, there is a
database that stores the raw data used for training the machine
learning model. This is the foundation of the whole system
because the accuracy of posture detection depends heavily on
the quality of data collected. The raw database contains
information as follows-

a) The angles for the landmarks for the human body with pre-
process data only, according to the requirements of the
model.

b) Detected body landmarks like shoulders, elbows, and
knees.

¢) Calculated joint angles of the body in degrees.

d) Labels that indicate whether the posture is good or bad.

These raw data were not directly used for training. Instead, it

first goes through a pre-processing stage, where unnecessary

noise is removed, and all the information is structured properly.

Only after this cleaning process, the data were sent for model

training.

In simple terms, this database acts as a storage warehouse that
keeps all raw posture-related data safe. Without it, the system
would not have the historical information required to train,
validate, and improve the posture detection model.

The process begins with loading a dataset containing joint
angles and labelled posture data, which serves as part of the
pre-processing stage. A machine learning model was then
trained on this dataset and evaluated for accuracy. If the results
are unsatisfactory, retraining is performed until the desired
performance is achieved. Once the model reaches an acceptable
accuracy, it is exported for deployment in real-time monitoring.
The trained model was integrated with a computer vision
algorithm to analyse live video streams, where it classifies
postures and displays the corresponding body angles. The
system uses colour indicators: green for good posture and red
for bad posture. In cases of poor posture, an alarm was
triggered, and both the angles and screenshots were recorded
for later analysis. The monitoring session concluded when the
user ended the program.

Figure 3: Flowchart of the purpose method
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Algorithm: Posture Detection and Correction System

Input: Posture dataset (joint angles, labels)
Output: Posture classification (Good/Bad), Alerts, Recorded log
data, Real-time graph.

1. Begin

2. The posture dataset is loaded.

3. Pre-processing (cleaning, normalisation, feature
extraction).

4. The machine learning model was trained on the processed
dataset.

hd

The model was evaluated using accuracy metrics.

6. If the accuracy is lower than the desired accuracy metrics,
return to step 4 and retrain.

7. The trained model was exported.

8. The trained model was integrated with computer vision for
real-time monitoring.

9. Capture body landmarks and calculate joint angles from
the live video.

10. The detected posture is displayed with the corresponding
angles.

11. If posture = good, it is highlighted in green.

12. If posture = bad, highlight in red, trigger an alarm, and
save the posture details with screenshots.

13. Steps 9—12 were repeated until the system stopped.

14. End

Pseudocode

BEGIN

LOAD dataset

PREPROCESS dataset

TRAIN model with dataset
CALCULATE accuracy

IF (accuracy > = threshold)

EXPORT trained model

ELSE

RETRAIN the model

INTEGRATE the trained model with computer vision
WHILE system is running:

CAPTURE frame from webcam
DETECT landmarks and CALCULATE joint angles
DISPLAY posture with angles

IF posture == "Good":

SHOW "Green"

ELSE IF posture == "Bad":

SHOW "Red"

TRIGGER alarm

SAVE angles and CAPTURE screenshot
END WHILE

END

3.1 Pose Detection using MediaPipe

MediaPipe Pose was used to detect 33 body landmarks and 31
landmarks per frame from a live camera feed [7][8][9]. Each
landmark includes normalised x and y coordinates and a
visibility score. For posture detection, only a subset of
keypoints was utilised: shoulders, elbows, knees, and an

estimated neck point derived from the midpoint between the
shoulder and ear landmarks. This configuration is sufficient for
analysing upper- and lower-body exercises, such as squats,
push-ups, and shoulder raises. To maintain consistency,
visibility scores were used to ignore unreliable detections when
the body parts were occluded or poorly lit.

3.2 Joint Angle Calculation

Joint angles are essential for analysing postures. Each angle
was formed using three consecutive points representing two
vectors. For instance, the left elbow angle is calculated from the
positions of the left shoulder, elbow, and wrist, and is given by

Equation 1.
u-v
O(theta) = cos™! (ﬁ)
[l - 11l

€]
Were,
u. v is the dot product of vectors u and v
|[u|| is the Euclidean norm (magnitude) of vector u
|[v|| is the Euclidean norm (magnitude) of vector v

3.2.1 Key Joint Configurations

For each monitored posture:

1. The elbow angles were calculated as neck — shoulder —
elbow — wrist.

2. Shoulder-neck alignment was estimated using shoulder and
mid-ear landmarks.

3. Neck tilt was assessed by comparing the vertical
displacement between the ears.

In scenarios where the user turns or shifts, the landmark

stability is enhanced by averaging the positions over recent

frames.

3.2.2 Temporal Smoothing

Temporal smoothing focuses on stabilising joint angle
calculations over time to avoid noisy or jittery outputs caused
by frame-wise fluctuations in pose estimation. Single-frame
detection often produces inconsistent results owing to
occlusions, motion blur, or rapid movements. These
inconsistencies can mislead posture classification if the joint
angles are calculated independently at every frame. To reduce
this variability, a basic temporal filter was applied using a
sliding window average over a fixed number of recent frames.
Let t be the raw joint angle at frame t. The smoothed joint
angle O is calculated using Equation 2.

t
1
BOsmooth @® = N Z e ()
i=t—-N+1

2
Here,
N is the window size, typically between 3 and 7 frames for real-
time feedback. This moving average reduces sudden spikes or
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drops in the angle values, providing a more stable estimate for
comparison with the reference postures.

3.3 Alert

Incorrect posture triggers immediate audio alerts to help users
correct their form without delay. A beeping sound is generated
if a joint remains out of range for a set number of frames. This
helps maintain focus without needing to constantly view the
screen, and at the same time, automatic screenshots of the bad
posture will be captured.

4. RESULT

From the output, the system successfully detected the person
and keypoints in correct positions such as head, shoulders,
elbows, wrists and knees. The majority of the keypoints align
well with the actual joint positions in the image, showing good
model accuracy in pose estimation. The model achieved an
average keypoint detection confidence score of 0.84, where
higher confidence is observed in larger body joints like
shoulders (above 0.9), while lower confidence is seen in smaller
joints (around 0.75-0.8). The Percentage of Correct Keypoints
(PCK@0.5) was estimated at 92% [3][9][14]. The Mean
Average Precision (mAP) for this single frame was
approximately 0.88, indicating a strong pose localisation
performance. There was a small variation in accuracy for
symmetrical limbs, and the left knee was detected with slightly

less precision (confidence 0.78) than the right knee (confidence
0.85). It was able to capture joint angle data across different
body movements and provide clear feedback when the
measured angles were outside the predefined correct range.
During evaluation, the detection process maintained a stable
measurement rate with minimal frame drops and consistent
tracking of key joint positions across sequences. The angle
measurement algorithm showed a high level of consistency
between repeated movements, with less than 3—5° of variation
in most controlled repetitions. When the posture deviated from
the target range, the notification system was triggered with a
delay of 5 s, allowing for corrective feedback. In movements,
such as bending or arm lifts, the accuracy slightly decreased
owing to rapid joint transitions; however, a recognition rate
above 90% was maintained for detecting out-of-range
conditions [12][13][15]. The detection sensitivity was effective
in identifying even minor deviations, such as 5°-7°
misalignment, which will be particularly beneficial for
precision-based activities, such as rehabilitation exercises or
yoga, as shown in Table 2. From Table 2, we can see that the
angle detection was mostly accurate when the participant was
standing at a normal distance from the camera. When the
subject was too far, the accuracy decreased slightly, and the
notification was sometimes triggered late. In close range, the
accuracy improved, but sometimes the system became too
sensitive, resulting in early notifications.

Table 1: Performance Analysis

. Avg. Angle Notification Trigger Detection Delay
Condition / Test Case Detection Error (°) Accuracy (%) (sec) Remarks
Normal distance, good light 2.5° 96% 0.4 Very stable, almost no false alerts
Normal distance, low light 4.2° 91% 0.5 Slightly less accurate in angles
Far distance (>3m) 5.8° 88% 0.6 Delay noticed, some late triggers
Close range (<1m) 2.1° 94% 0.3 Good accuracy, but some over-sensitivity
Fast movement 3.9° 90% 0.7 Slight lag, but still functional
Table 2: Pose Angle Detection & Notification System
Metric / Parameter Observed Value Expected / Ideal Value Interpretation
Average detection accuracy 93% > 950 Slight drop in accuracy due to background variation and
occasional occlusion.
Mean angular error (degrees) 390 <20 Small deviations, potentlall_y caused by varied lighting and
clothing types.
Notification trigger accuracy 91% > 90% The system reliably alerts when pose angles exceed the
correct range.
False positive rate 59, <3% Slightly higher than expected; occasional alerts for
borderline angles.
Average processing time per frame 0.28s <0.30s Meets near real-time requirement.
System uptime reliability 99.2% >99% High operational stability throughout the testing period.

Table 3 presents the human pose estimation perspective, and
the main strength here is the stable angle calculation from key
joints. The method focuses on capturing raw angle values;
therefore, it is more lightweight and can work in a limited
hardware environment. The accuracy is sufficient for practical

use, such as exercise monitoring or rehabilitation, but for very

precise clinical needs, the angular error could be reduced
further. False-positive alerts could also be minimised by adding
a small tolerance margin before triggering. Figures 4 (a) to 4 (c)
show the live graphs captured while performing squatting,
standing, and walking.

375

© 2026 Laishram Trinity, S Athisii Kayina, Usham Sanjota Chanu. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC BY NC ND).https://creativecommons.org/licenses/by/4.0/



https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi.

PEER-REVIEWED JOURNAL

Volume 5 Issue 1 [Jan- Feb] Year 2026

Live Joint Angles

Live Joint Angles

Live Joint Angles

180 ¢ 7YX = ) . 80 o> = = -~ 180 = < N TS
FA AV '.'r\ T e S AT -“‘,,‘ 1 SN —— — T '\/’ ¥/ 'f '\Av' S g Vg e — = — \\‘
\J/ } V) A
1604~ \ ’ TLY \ 160 160 \ ' v
!
140 { \ 140 140 l}
( ! “ 120 120
00 { — Neck ’ ‘\’» 100 Neck 100 — Neck
[ L_Knee | L_Knee L_Knee
80 { R_Knee \\J 80 R_Knee 80 —— R_Knee
| | A
0 ‘ \/ \ ‘/ \ 60 60
\ | |
4 M | \ | 40 40 /
S N / | _ e - N \ o
L ~ N\ R S Pl
0 ‘ o g | ? 20 20 / |
M \ \:
+ — - = [} 0
0 ) 40 80 1 ) 0 60 80 100 20 40 60 L 100

Figure 4: (a) Squatting

Figure 5 shows the correlation heatmap of joint angles, which
reveals that most joints show weak or negligible correlations,
indicating independent movement patterns. However, a very
strong positive correlation (0.93) was observed between the left
and right knees, reflecting their natural symmetrical movements
during postural changes. Moderate correlations were also noted
between the neck and knees (~0.34-0.36), suggesting alignment
between the head position and leg posture.

Figure 5: Correlation Heatmap
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Table 3: Accuracy Metrics

Action Precision Recall F1-score
Standing 1.00 0.99 0.99
Walking 0.98 0.98 0.98
Squatting 0.92 1.00 0.96

The performance of the proposed posture detection system was
evaluated using a confusion matrix and classification report, as
shown in Table 4. The model was trained to classify three
postures: Squatting, Standing, and Walking. The overall model
accuracy was 98.56%. The parameters for the accuracy metrics
were calculated using the following equations:

Figure: 4(b)Standing

Figure: 4(c)Walking

Accuracy = % (3)

Precision = TPT:JFP (4)

Recall = —— (5)

S T
Were:

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

Accuracy is given by Equation 3, which measures the overall
correctness of the model by calculating the proportion of
correctly classified instances (True Positives + True Negatives)
out of the total number of predictions.

Precision is given by Equation 4, which indicates how many of
the instances predicted as positive are actually correct. This is
particularly important for reducing false positives.

Recall is given by Equation 5, which measures the ability of the
model to identify all relevant instances. It calculates the
proportion of actual positives that were correctly predicted,
thereby reducing the number of false negatives.

The F1 Score is given by Equation 6, and it is the harmonic
mean of Precision and Recall. It provides a balanced measure,
especially when the dataset has an uneven class distribution, by
considering both the false positives and false negatives.

5. DISCUSSION

The results clearly show that the system is effective in detecting
posture deviations using angle-based analysis. The high
precision and recall values indicate that the algorithm
consistently identified both correct and incorrect sitting
positions across different conditions. The minimal drop in
accuracy under varied lighting and background conditions
suggests that the model's performance is not heavily dependent
on environmental factors. However, the detection time may
slightly increase in scenarios with significant occlusion, such as
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when the user’s arms block the camera view, which could be
addressed in future studies. The overall findings confirm that
the angle threshold approach is both computationally efficient
and accurate for real-time posture monitoring applications.
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