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sample city network showed that the hybrid approach reduced congestion buildup and 

improved travel efficiency compared with conventional methods, making it well-suited for 

autonomous navigation, intelligent transportation, and smart city traffic management. 
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1. INTRODUCTION 

Urban road networks frequently experience significant 

congestion, which reduces traffic efficiency and increases travel 

time [3]. Traditional routing methods, such as the Edmonds-

Karp algorithm, are based on flow and ensure that paths are 

viable concerning network capacity, but cannot adapt to 

fluctuating congestion levels [10]. Conversely, heuristics focus 

on finding the shortest path to minimise travel time or distance 

but neglect real-time flow limitations, often resulting in less-

than-optimal routes during heavy traffic [9]. This study 

introduces a hybrid routing model that combines the Edmonds-

Karp maximum flow algorithm with dynamic congestion 

modelling and a congestion-aware shortest path heuristic to 

enable adaptive and capacity-respecting navigation. The 

Edmonds-Karp algorithm guarantees that routing choices do not 

exceed the capacity of any link [2]. Meanwhile, congestion 

modelling keeps the edge utilisation updated as vehicles move 

through the networks. A modified shortest-path heuristic that 

considers both distance and congestion facilitate adaptive 

rerouting, which strikes a balance between efficiency and 

fairness. To improve the model's interpretability, linear 

interpolation (LERP) was used to simulate vehicle movements, 

offering a visual representation of congestion impacts and the 

selection of optimal paths of vehicles. 

Experimental simulations conducted on a sample city network 

showed that this hybrid approach effectively mitigated 

congestion buildup and enhanced average travel efficiency 

compared to conventional routing strategies. The findings 

underscore the benefits of integrating flow-based feasibility 

with congestion-aware optimisation, positioning the model as a 

suitable solution for autonomous navigation, intelligent 

transportation systems, and smart city traffic management 

applications. 

 

2. LITERATURE SURVEY 

Traffic routing optimisation shares many similarities with 

Virtual Machine (VM) placement in cloud computing, as both 

are NP-hard problems that require the efficient allocation of 

limited resources [1][6]. Heuristic approaches, such as power-

aware best fit decreasing (PABFD), provide fast decisions but 

often miss global optimality, whereas metaheuristics, such as 

Genetic Algorithms (GA) and ant colony optimisation (ACO), 

achieve better efficiency through the adaptive balancing of 

competing objectives [5]. Flow-based algorithms, particularly 

Ford-Fulkerson, Edmonds–Karp, and Dinic, have been widely 

applied to graph-related tasks, such as image segmentation and 

traffic navigation. Edmonds-Karp improves Ford-Fulkerson by 

using BFS to always find the shortest augmenting path, whereas 

Dinic introduces the level graph strategy that restricts 

augmenting paths to nodes of increasing levels, making it the 

fastest and most efficient in dense networks such as traffic or 

image graphs [4]. Parallel to these, metaheuristics such as 

Cuckoo Search (CS), inspired by cuckoo brood parasitism and 

Lévy flights, demonstrate strong performance in balancing the 

exploration and exploitation of large search spaces, similar to 

the hybridisation of Edmonds-Karp’s flow feasibility with 

adaptive congestion-aware heuristics [6]. Recent advances have 

further emphasised the computational efficiency of dynamic 

networks by proposing conditional re-invocation flow 

algorithms. Instead of recalculating paths for every minor edge 

weight change, flow recomputation is triggered only when the 

bottleneck edges shift traffic regimes or when the non-

bottleneck edges lose capacity beyond their residual tolerance 

[8]. This approach drastically reduces the number of flow 

algorithm invocations from potentially millions to a few 

hundred, making real-time traffic navigation systems, such as 

Google Maps, scalable and practical. Collectively, these studies 

highlight the progression from brute-force recalculations to 

intelligent, hybridised strategies that integrate flow algorithms 

with adaptive heuristics, a direction that motivates our proposed 

Smart Fusion Re-Routing Algorithm (SFRA). 

 

3. METHODOLOGY 

3.1 Edmonds-Karp  

The Edmonds-Karp algorithm is an implementation of the Ford-

Fulkerson method for computing the maximum flow in a flow 

network [7], and its primary role in our hybrid model is to 

ensure that routing decisions respect the road capacity 

constraints. 

3.1.2 Edmonds-Karp working concept 

Flow network representation: Each road is modelled as a 

directed edge 𝑒(𝑢, 𝑣) with capacity 𝑐(𝑢, 𝑣). 

Residual graph: At each iteration, a residual graph 𝐺𝑓 is 

maintained where edge capacity reflects unused capacity, which 

is given by Equation 1. 

𝐶𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣)                                        (1) 

Augmenting path search: The algorithm repeatedly finds a 

shortest augmenting path from the source 𝑠 to sink 𝑡 using 

Breadth-First Search (BFS). 

Flow update: Once a path is found, the minimum residual 

capacity, the bottleneck is determined by using Equation 2. 

∆ =  min
(𝑢,𝑣)∈𝑃

{𝐶𝑓 (𝑢, 𝑣)}                                                   (2) 

and the flow is updated accordingly through Equation 3. 

𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + ∆, 𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) − ∆            (3) 

This process continues until no augmenting path exists. 

3.2 Congestion Modelling (added layer) 

Although Edmonds-Karp ensures capacity feasibility, it does 

not consider traffic dynamics. Thus, a congestion modelling 

layer was added. 

3.2.1 Concept 

Each edge 𝑒(𝑢, 𝑣) is assigned a congestion factor 𝛾(𝑢, 𝑣) ∈
[0,1] that evolves with traffic, the factor value increased as the 

number of vehicles increased. 

The congestion model is given by Equation 4. 

     𝛾(𝑢, 𝑣) =
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑜𝑛 (𝑢,𝑣)

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 (𝑢,𝑣)
                                          (4) 

𝛾(𝑢, 𝑣) = 0 indicates that it’s the free-flowing edge. 

𝛾(𝑢, 𝑣) = 1 indicates that it’s congested, effectively blocked. 

This layer provides real-time awareness of traffic conditions 

and forms a basic layer for rerouting decisions in the hybrid 

layer. 
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Consider a scenario where the edge (0,1) has a capacity of 10, 

but already 9 cars are on it, the congestion factor. 𝛾(0,1)=0.9 

This congestion factor directly influences the cost of using that 

edge in the shortest-path heuristic, and it’s given by Equation 5. 

𝜔(𝑢, 𝑣) =  𝛼. 𝑑(𝑢, 𝑣) +  𝛽. 𝛾(𝑢, 𝑣)                    (5) 

Equation 5 helps avoid the congested direction, thus resulting in 

the creation of a new route. 

𝑑(𝑢, 𝑣) is the physical distance, weight of the moving from 

node u to node v. 

Consider the road length as 2 km, 𝑑(𝑢, 𝑣) = 2 

𝛾(𝑢, 𝑣) is the congestion factor of the edge (𝑢, 𝑣) which can be 

defined by Equation 6. 

𝛾(𝑢, 𝑣) =  
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒𝑠

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑒𝑑𝑔𝑒
                     (6) 

If  𝑟𝑜𝑎𝑑 𝑒𝑚𝑝𝑡𝑦 ← 𝛾 = 0 

If 𝑓𝑢𝑙𝑙𝑦 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 ← 𝛾 = 1 

 

The weighting coefficients are the 𝛼, 𝛽. They control how much 

importance we give to distance vs congestion. 

𝐻𝑖𝑔ℎ 𝛼, 𝑙𝑜𝑤 𝛽 → 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝐿𝑜𝑤 𝛼, 𝐻𝑖𝑔ℎ 𝛽 → 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑒 𝑎𝑣𝑜𝑖𝑑𝑖𝑛𝑔 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 

 

3.3 Approached Hybrid algorithm  

By combining the two terms, the algorithm avoids extreme 

cases. 

Equation 5 was reused here to compute the numericals. 

The sensitivity of the algorithm is presented in Table 1, which 

shows how the choice between Road A (5 km, γ=0.9) and Road 

B (7 km, γ=0.2) changes when α and β are varied. 

Road A: Distance = 5 Km (d=5 km) Congestion = 0.9 (γ=0.9)  

Road B: Distance = 7 Km (d=7 km) Congestion = 0.2 (γ=0.2) 

Equation 5 is substituted with the values of roads A and B. 

Road A cost: 𝜔𝐴 = 𝛼. 5 + 𝛽. 0.9 

Road A cost: 𝜔𝐵 = 𝛼. 7 + 𝛽. 0.2 

 
Table 1: Sensitivity Analysis Table 

 

𝛼 𝛽 𝜔𝐴 𝜔𝐵 Decision 

1 1 5 + 0.9 = 5.9 7 + 0.2 = 7.2 A 

1 5 5 + 4.5 = 9.5 7 + 1.0 = 8.0 B 

2 5 10 + 4.5 = 14.5 14 + 1.0 = 15.0 A 

3 5 15 + 4.5 = 19.5 21 + 1.0 = 22.0 A 

2 10 10 + 9.0 = 19.0 14 + 2.0 = 16.0 B 

4 2 20 + 1.8 = 21.8 28 + 0.4 = 28.4 A 

 

Interpretation of Table 1 

• If β is small (low importance of congestion), the algorithm 

selects Road A (shorter distance dominates). 

• If β is large (high importance of congestion), the algorithm 

selects Road B (less crowded dominates). 

• When α increases, distance dominates more, maintaining 

the preference toward Road A. 

 

 

Fig 1: Decision boundary for the hybrid cost function with the recommended directions. 
 

 

Figure 1 clearly shows that Road A is optimal when distance is 

weighted more heavily relative to congestion (lower β values), 

whereas Road B becomes optimal when congestion is weighted 

more heavily (higher β values). The arrows highlight the 

sensitivity of the decision to changes in α and β values. 

3.3.1 Components of the graph 

Light Green Region: Road A is preferred. This occurs when 

the combination of α and β results in a lower hybrid cost for 

Road A. 

Light Blue Region: Road B is preferred, indicating scenarios 

where congestion has more impact relative to distance, making 

Road B optimal. 

Grey Region: Invalid β values (negative congestion weight), 

which are not physically meaningful. 

3.3.2 Decision Boundary (Orange Line): 

• Represents the set of α–β combinations where the hybrid 

costs for both roads are equal (𝐶𝐴 =  𝐶𝐵) 

• This boundary separates the zones where each road is 

preferred. 

This visualisation effectively communicates both qualitative 

and quantitative aspects of the hybrid cost decision, making it 

clear which road is preferred under different weighting 

scenarios and how the decision shifts with α–β variations. 
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Figure 2: Flowchart of Hybrid Routing for Congestion-Aware Navigation 
 

 
 

The algorithm will first sense the routes of different routes. If 

there is congestion in the route, then this route will not be taken 

and will be further rerouted. And if there is a non-congested 

road, then the algorithm will select this non-congested road and 

check whether the destination has reached or not. If the 

algorithm will stop if not again, it will be rerouted. 

 

Algorithm: Hybrid Routing for Congestion-Aware 

Navigation 

Input: City road network (nodes, edges, capacities), EK path, 

Hybrid path 

Output: Animated car simulation showing congestion and 

optimal routing 

1. Begin 

2. The city road network and edge capacities of the road 

network were loaded. 

3. A directed graph representing the road network was 

constructed. 

4. The EK (congested) and hybrid (optimal) paths are 

defined. 

5. Each path was converted into coordinates for plotting and 

animation. 

6. The plot is initialised with nodes, edges, and edge labels 

(capacities). 

7. Multiple cars are initialised for each path. 

 

 

Red cars for the EK path 

Green cars for the Hybrid path 

8. Initialise the congestion tracking for the EK path edges. 

9. For each animation frame: 

a. Move EK cars along the path (slower) and increase the 

congestion on the edges. 

b. Move Hybrid cars along the path (faster). 

c. Update the EK path edge colours based on the congestion 

level (darker red for higher congestion). 

10. The cars’ positions along the paths were displayed in real 

time. 

11. Step 9 was repeated until the animation ended. 

12. Optionally, the animation can be saved as a GIF for further 

analysis. 

13. End 

 

Pseudocode 

BEGIN 

LOAD city road network (nodes, edges, capacities) 

BUILD directed graph G 

DEFINE EK path (congested) and Hybrid path (optimal) 

CONVERT paths to coordinates for plotting 

INITIALIZE plot with nodes, edges, and capacities 

INITIALIZE multiple cars: 

    Red cars for the EK path 

    Green cars for the Hybrid path 

INITIALIZE congestion tracker for EK path edges 

 

WHILE animation is not finished: 

FOR each car in the EK path: 

  MOVE car along path (slower) 

  UPDATE congestion on the current edge 

  FOR each car in the Hybrid path: 

  MOVE car along path (faster) 

  UPDATE EK path edge colours based on congestion 

  DISPLAY cars on the plot 

  END WHILE 

OPTIONALLY SAVE animation as GIF 

END 

 

4. Complexity Analysis 

The proposed algorithm constructs a directed graph from the 

capacity matrix and extracts the paths for congestion-aware 

navigation. The complexity is analysed as follows: 

1. Graph Construction 

The algorithm iterates over all entries of the capacity matrix of 

size 𝑛 × 𝑛 times. An edge is inserted into the graph for each 

non-zero entry. Because each insertion takes a constant time, the 

total complexity of the graph construction is 𝑂(𝑛2). 

2. Path Extraction: The path-coordinate function processes 

at most mmm edges in a given path. As the path length 

𝑚 ≤ 𝑛, the cost is bounded by 𝑂(𝑛) . 

3. Interpolation Function: The interpolate-path function 

computes intermediate positions using simple arithmetic 

operations, which run in constant time 𝑂(1) . 
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Combining these, the overall time complexity of the algorithm 

is dominated by the graph construction step, yielding a time 

complexity of 𝑂(𝑛2) . 

For space complexity, the algorithm requires memory to store 

the capacity matrix and the graph. (𝑂(𝑛2)) , the graph 

representation (𝑂(𝑛2)), and additional linear storage for paths. 

Hence, the total space usage is given by 𝑂(𝑛2)  

 
Table 2: Comparative Complexity Analysis 

 

Algorithm Time 

Complexity 

Space 

Complexity 

Key Limitation 

Edmonds-
Karp (Max 

Flow) 

𝑂(𝑉𝐸2) 𝑂(𝑉 + 𝐸) High computational 
cost in dense 

networks. 

Dijkstra’s 

(shortest 

path) 

𝑂(𝑉 + 𝑉 log 𝑉) 𝑂(𝑉 + 𝐸) Ignores congestion 

Proposed 

Hybrid 
Algorithm 

𝑂(𝑛2) 𝑂(𝑛2) Quadratic scaling; 

suitable for small- 
to medium-sized 

networks, but may 

require optimisation 
for very large 

networks. 

 

Table 2 analyses the comparison highlights that while classical 

flow-based algorithms such as Edmonds–Karp guarantee 

feasible routing under network capacity constraints, they are 

computationally expensive for large, dense networks. On the 

other hand, shortest-path heuristics are efficient but fail to adapt 

to real-time congestion conditions, often producing suboptimal 

routes under heavy traffic. The proposed hybrid graph 

construction achieves a balance by operating in quadratic time, 

which is lightweight for small- to medium-scale networks, 

while simultaneously incorporating congestion-aware routing. 

This trade-off ensures practical applicability in urban road 

systems where responsiveness and adaptability are as important 

as computational efficiency. 

 

5. Result 

The performance of the proposed hybrid routing algorithm was 

evaluated using a simulated urban road network in Figure 3. 

Two paths from the source node (0) to the destination node (4) 

were analysed. 

• EK Path (Congested): Edges 0→1→3→4 using the 

traditional Edmonds-Karp algorithm. 

• Hybrid Path (Optimal): Edges 0→2→3→4 using the 

proposed hybrid approach. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Traffic simulation comparing the EK algorithm and the proposed 

hybrid approach, showing reduced congestion and improved travel efficiency. 
 

 
 

5.1 Observations 

• EK Path: Vehicles experienced slower movement because 

of the congestion. The edge colours dynamically 

transitioned to dark red as traffic increased, indicating 

bottlenecks. The overall travel time was longer owing to 

the cumulative congestion effects.  

• Hybrid Path: Vehicles travel faster along uncongested 

edges. The edge colours remained stable, indicating 

minimal congestion. The hybrid path significantly reduced 

travel time compared to the EK path.  

 

5.2 CONCLUSION 

The simulation confirmed that the hybrid routing algorithm 

effectively minimised congestion by dynamically selecting the 

optimal paths. The visual results highlight that the EK path is 

susceptible to congestion, whereas the hybrid approach 

maintains a smooth traffic flow, demonstrating its suitability for 

congestion-aware urban navigation. 

 

6. Future Scope 

The smart fusion rerouting algorithm opens several promising 

directions for both academic research and practical applications. 

From a research perspective, future studies should focus on the 

theoretical analysis of the hybrid cost function to establish 

optimal guarantees and convergence properties under varying 

weight configurations. Comparative evaluations with advanced 

flow algorithms, such as Push-Relabel and Capacity Scaling, 

could further validate the efficiency of dense and dynamic 

networks. Incorporating predictive learning techniques, 

including reinforcement learning and evolutionary optimisation, 

offers the potential to move beyond reactive congestion 

management toward proactive, pattern-driven navigation [11]. 

Additionally, extending the framework to multi-source multi-

sink flow problems and stochastic traffic models would enhance 

its robustness under real-world uncertainties. 

On the application side, the algorithm can be integrated with 

live GPS data, IoT sensors, and edge computing platforms to 

enable real-time congestion-aware routing in smart cities. Its 

congestion modelling layer can be adapted to multimodal 

transportation systems, covering cars, buses, and emergency 

vehicles, thereby supporting holistic mobility planning. The 

visualisation module can also be scaled to interactive 3D or 

AR-based navigation systems, offering greater interpretability 
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for both end users and urban planners. Finally, integration with 

autonomous vehicle routing frameworks and intelligent 

transportation systems would position the model as a practical 

and scalable solution for next-generation urban-traffic 

management. 
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