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1. INTRODUCTION

Urban road networks frequently experience significant
congestion, which reduces traffic efficiency and increases travel
time [3]. Traditional routing methods, such as the Edmonds-
Karp algorithm, are based on flow and ensure that paths are
viable concerning network capacity, but cannot adapt to
fluctuating congestion levels [10]. Conversely, heuristics focus
on finding the shortest path to minimise travel time or distance
but neglect real-time flow limitations, often resulting in less-
than-optimal routes during heavy traffic [9]. This study
introduces a hybrid routing model that combines the Edmonds-
Karp maximum flow algorithm with dynamic congestion
modelling and a congestion-aware shortest path heuristic to
enable adaptive and capacity-respecting navigation. The
Edmonds-Karp algorithm guarantees that routing choices do not
exceed the capacity of any link [2]. Meanwhile, congestion
modelling keeps the edge utilisation updated as vehicles move
through the networks. A modified shortest-path heuristic that
considers both distance and congestion facilitate adaptive
rerouting, which strikes a balance between efficiency and
fairness. To improve the model's interpretability, linear
interpolation (LERP) was used to simulate vehicle movements,
offering a visual representation of congestion impacts and the
selection of optimal paths of vehicles.

Experimental simulations conducted on a sample city network
showed that this hybrid approach effectively mitigated
congestion buildup and enhanced average travel efficiency
compared to conventional routing strategies. The findings
underscore the benefits of integrating flow-based feasibility
with congestion-aware optimisation, positioning the model as a
suitable solution for autonomous navigation, intelligent
transportation systems, and smart city traffic management
applications.

2. LITERATURE SURVEY

Traffic routing optimisation shares many similarities with
Virtual Machine (VM) placement in cloud computing, as both
are NP-hard problems that require the efficient allocation of
limited resources [1][6]. Heuristic approaches, such as power-
aware best fit decreasing (PABFD), provide fast decisions but
often miss global optimality, whereas metaheuristics, such as
Genetic Algorithms (GA) and ant colony optimisation (ACO),
achieve better efficiency through the adaptive balancing of
competing objectives [5]. Flow-based algorithms, particularly
Ford-Fulkerson, Edmonds—Karp, and Dinic, have been widely
applied to graph-related tasks, such as image segmentation and
traffic navigation. Edmonds-Karp improves Ford-Fulkerson by
using BFS to always find the shortest augmenting path, whereas
Dinic introduces the level graph strategy that restricts
augmenting paths to nodes of increasing levels, making it the
fastest and most efficient in dense networks such as traffic or
image graphs [4]. Parallel to these, metaheuristics such as
Cuckoo Search (CS), inspired by cuckoo brood parasitism and
Lévy flights, demonstrate strong performance in balancing the
exploration and exploitation of large search spaces, similar to
the hybridisation of Edmonds-Karp’s flow feasibility with

adaptive congestion-aware heuristics [6]. Recent advances have
further emphasised the computational efficiency of dynamic
networks by proposing conditional re-invocation flow
algorithms. Instead of recalculating paths for every minor edge
weight change, flow recomputation is triggered only when the
bottleneck edges shift traffic regimes or when the non-
bottleneck edges lose capacity beyond their residual tolerance
[8]. This approach drastically reduces the number of flow
algorithm invocations from potentially millions to a few
hundred, making real-time traffic navigation systems, such as
Google Maps, scalable and practical. Collectively, these studies
highlight the progression from brute-force recalculations to
intelligent, hybridised strategies that integrate flow algorithms
with adaptive heuristics, a direction that motivates our proposed
Smart Fusion Re-Routing Algorithm (SFRA).

3. METHODOLOGY
3.1 Edmonds-Karp
The Edmonds-Karp algorithm is an implementation of the Ford-
Fulkerson method for computing the maximum flow in a flow
network [7], and its primary role in our hybrid model is to
ensure that routing decisions respect the road capacity
constraints.
3.1.2 Edmonds-Karp working concept
Flow network representation: Each road is modelled as a
directed edge e(u, v) with capacity c(u, v).
Residual graph: At each iteration, a residual graph Gf is
maintained where edge capacity reflects unused capacity, which
is given by Equation 1.
Cr(u,v) = c(u,v) — f(u,v) (1)
Augmenting path search: The algorithm repeatedly finds a
shortest augmenting path from the source s to sink t using
Breadth-First Search (BFS).
Flow update: Once a path is found, the minimum residual
capacity, the bottleneck is determined by using Equation 2.
A= (g_y)gp{Cf (w, v)} (2
and the flow is updated accordingly through Equation 3.
f(u,v)<—f(u,v)+A,f(u,v)<—f(u,v)— A (3)
This process continues until no augmenting path exists.
3.2 Congestion Modelling (added layer)
Although Edmonds-Karp ensures capacity feasibility, it does
not consider traffic dynamics. Thus, a congestion modelling
layer was added.
3.2.1 Concept
Each edge e(u,v)is assigned a congestion factor y(u,v) €
[0,1] that evolves with traffic, the factor value increased as the
number of vehicles increased.
The congestion model is given by Equation 4.
__ vehicles on (u,v)

y(u, v) = capacity of (u,v)
y(u, v) = 0 indicates that it’s the free-flowing edge.
y(u,v) = 1 indicates that it’s congested, effectively blocked.
This layer provides real-time awareness of traffic conditions
and forms a basic layer for rerouting decisions in the hybrid
layer.

4)
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Consider a scenario where the edge (0,1) has a capacity of 10,
but already 9 cars are on it, the congestion factor. y(0,1)=0.9
This congestion factor directly influences the cost of using that
edge in the shortest-path heuristic, and it’s given by Equation 5.
w,v) = a.d,v)+ B.y(wv) %)

Equation 5 helps avoid the congested direction, thus resulting in
the creation of a new route.

d(u,v) is the physical distance, weight of the moving from
node u to node v.

Consider the road length as 2 km, d(u, v) =2

y(u, v) is the congestion factor of the edge (u, v) which can be

defined by Equation 6.
vehicles currently using the edges
y(wv) = -
capacity of edge

If road empty <y =0
If fully saturated <y =1

(6)

The weighting coefficients are the @, 8. They control how much
importance we give to distance vs congestion.

High a,low  — prioritize shortest distance

Low a,High B — prioritize avoiding congestion

3.3 Approached Hybrid algorithm

By combining the two terms, the algorithm avoids extreme
cases.

Equation 5 was reused here to compute the numericals.

The sensitivity of the algorithm is presented in Table 1, which
shows how the choice between Road A (5 km, y=0.9) and Road
B (7 km, y=0.2) changes when a and 3 are varied.

Road A: Distance = 5 Km (d=5 km) Congestion = 0.9 (y=0.9)
Road B: Distance = 7 Km (d=7 km) Congestion = 0.2 (y=0.2)
Equation 5 is substituted with the values of roads A and B.
Road A cost: w,=a.5+.0.9

Road A cost: wg=a.7+.0.2

Table 1: Sensitivity Analysis Table

a 4 wy wp Decision
1 1 5+09=59 7+02=72 A
1 5 5+45=95 7+1.0=8.0 B
2 5 10+4.5=14.5 14+1.0=15.0 A
3 5 15+4.5=19.5 21+1.0=22.0 A
2 10 10+9.0=19.0 14+2.0=16.0 B
4 2 20+1.8=21.8 28+0.4=28.4 A

Interpretation of Table 1

e If B is small (low importance of congestion), the algorithm
selects Road A (shorter distance dominates).

e If B is large (high importance of congestion), the algorithm
selects Road B (less crowded dominates).

e When a increases, distance dominates more, maintaining
the preference toward Road A.

Fig 1: Decision boundary for the hybrid cost function with the recommended directions.

Decision Boundary for Hybrid Cost Function with Preference Arrows
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Figure 1 clearly shows that Road A is optimal when distance is
weighted more heavily relative to congestion (lower B values),
whereas Road B becomes optimal when congestion is weighted
more heavily (higher B values). The arrows highlight the
sensitivity of the decision to changes in o and p values.

3.3.1 Components of the graph

Light Green Region: Road A is preferred. This occurs when
the combination of o and B results in a lower hybrid cost for
Road A.

Light Blue Region: Road B is preferred, indicating scenarios
where congestion has more impact relative to distance, making
Road B optimal.

Grey Region: Invalid  values (negative congestion weight),

which are not physically meaningful.

3.3.2 Decision Boundary (Orange Line):

e Represents the set of o—f combinations where the hybrid
costs for both roads are equal (C, = Cg)

e This boundary separates the zones where each road is
preferred.

This visualisation effectively communicates both qualitative

and quantitative aspects of the hybrid cost decision, making it

clear which road is preferred under different weighting

scenarios and how the decision shifts with a—f variations.
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Figure 2: Flowchart of Hybrid Routing for Congestion-Aware Navigation

Define all the paths

Check the congestions

Is road
congested ?

— Re-Route Select the road

Yes Destination No

reach ?

The algorithm will first sense the routes of different routes. If
there is congestion in the route, then this route will not be taken
and will be further rerouted. And if there is a non-congested
road, then the algorithm will select this non-congested road and
check whether the destination has reached or not. If the
algorithm will stop if not again, it will be rerouted.

Algorithm: Hybrid Routing for Congestion-Aware
Navigation

Input: City road network (nodes, edges, capacities), EK path,
Hybrid path

Output: Animated car simulation showing congestion and

optimal routing

1. Begin

2. The city road network and edge capacities of the road
network were loaded.

3. A directed graph representing the road network was
constructed.

4. The EK (congested) and hybrid (optimal) paths are
defined.

5. Each path was converted into coordinates for plotting and
animation.

6. The plot is initialised with nodes, edges, and edge labels
(capacities).

7. Multiple cars are initialised for each path.

Red cars for the EK path

Green cars for the Hybrid path

8. Initialise the congestion tracking for the EK path edges.

9. For each animation frame:

a. Move EK cars along the path (slower) and increase the
congestion on the edges.

b. Move Hybrid cars along the path (faster).

c. Update the EK path edge colours based on the congestion
level (darker red for higher congestion).

10. The cars’ positions along the paths were displayed in real
time.

11. Step 9 was repeated until the animation ended.

12. Optionally, the animation can be saved as a GIF for further
analysis.

13. End

Pseudocode

BEGIN

LOAD city road network (nodes, edges, capacities)
BUILD directed graph G

DEFINE EK path (congested) and Hybrid path (optimal)
CONVERT paths to coordinates for plotting
INITIALIZE plot with nodes, edges, and capacities
INITIALIZE multiple cars:

Red cars for the EK path

Green cars for the Hybrid path

INITIALIZE congestion tracker for EK path edges

WHILE animation is not finished:
FOR each car in the EK path:

MOVE car along path (slower)
UPDATE congestion on the current edge
FOR each car in the Hybrid path:
MOVE car along path (faster)

UPDATE EK path edge colours based on congestion
DISPLAY cars on the plot

END WHILE

OPTIONALLY SAVE animation as GIF
END

4. Complexity Analysis

The proposed algorithm constructs a directed graph from the

capacity matrix and extracts the paths for congestion-aware

navigation. The complexity is analysed as follows:

1. Graph Construction

The algorithm iterates over all entries of the capacity matrix of

size n X n times. An edge is inserted into the graph for each

non-zero entry. Because each insertion takes a constant time, the

total complexity of the graph construction is 0(n?).

2. Path Extraction: The path-coordinate function processes
at most mmm edges in a given path. As the path length
m < n, the cost is bounded by O(n) .

3. Interpolation Function: The interpolate-path function
computes intermediate positions using simple arithmetic
operations, which run in constant time 0O(1) .
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Combining these, the overall time complexity of the algorithm
is dominated by the graph construction step, yielding a time
complexity of 0(n?) .

For space complexity, the algorithm requires memory to store
the capacity matrix and the graph. (0(n?)) , the graph
representation (0(n?)), and additional linear storage for paths.
Hence, the total space usage is given by 0(n?)

Table 2: Comparative Complexity Analysis

Algorithm Time Space Key Limitation
Complexity Complexity
Edmonds- 0(VE?) O(V+E) High computational
Karp (Max cost in dense
Flow) networks.
Dijkstra’s oV +VlogV) O(V+E) Ignores congestion
(shortest
path)
Proposed 0(n?%) 0(n? Quadratic scaling;
Hybrid suitable for small-
Algorithm to medium-sized
networks, but may
require optimisation
for very large
networks.

Table 2 analyses the comparison highlights that while classical
flow-based algorithms such as Edmonds—Karp guarantee
feasible routing under network capacity constraints, they are
computationally expensive for large, dense networks. On the
other hand, shortest-path heuristics are efficient but fail to adapt
to real-time congestion conditions, often producing suboptimal
routes under heavy traffic. The proposed hybrid graph
construction achieves a balance by operating in quadratic time,
which is lightweight for small- to medium-scale networks,
while simultaneously incorporating congestion-aware routing.
This trade-off ensures practical applicability in urban road
systems where responsiveness and adaptability are as important
as computational efficiency.

5. Result

The performance of the proposed hybrid routing algorithm was

evaluated using a simulated urban road network in Figure 3.

Two paths from the source node (0) to the destination node (4)

were analysed.

e EK Path (Congested): Edges 0—1—3—4 using the
traditional Edmonds-Karp algorithm.

e Hybrid Path (Optimal): Edges 0—2—3—4 using the
proposed hybrid approach.

Figure 3: Traffic simulation comparing the EK algorithm and the proposed
hybrid approach, showing reduced congestion and improved travel efficiency.

EK Path (Congestion)

/ \ // \""\

3 —t—y 4

\/ \‘\//

5.1 Observations

e EK Path: Vehicles experienced slower movement because
of the congestion. The edge colours dynamically
transitioned to dark red as traffic increased, indicating
bottlenecks. The overall travel time was longer owing to
the cumulative congestion effects.

e Hybrid Path: Vehicles travel faster along uncongested
edges. The edge colours remained stable, indicating
minimal congestion. The hybrid path significantly reduced
travel time compared to the EK path.

Hybrid Path (Optimal)

5.2 CONCLUSION

The simulation confirmed that the hybrid routing algorithm
effectively minimised congestion by dynamically selecting the
optimal paths. The visual results highlight that the EK path is
susceptible to congestion, whereas the hybrid approach
maintains a smooth traffic flow, demonstrating its suitability for
congestion-aware urban navigation.

6. Future Scope

The smart fusion rerouting algorithm opens several promising
directions for both academic research and practical applications.
From a research perspective, future studies should focus on the
theoretical analysis of the hybrid cost function to establish
optimal guarantees and convergence properties under varying
weight configurations. Comparative evaluations with advanced
flow algorithms, such as Push-Relabel and Capacity Scaling,
could further validate the efficiency of dense and dynamic
networks. Incorporating predictive learning techniques,
including reinforcement learning and evolutionary optimisation,
offers the potential to move beyond reactive congestion
management toward proactive, pattern-driven navigation [11].
Additionally, extending the framework to multi-source multi-
sink flow problems and stochastic traffic models would enhance
its robustness under real-world uncertainties.

On the application side, the algorithm can be integrated with
live GPS data, ToT sensors, and edge computing platforms to
enable real-time congestion-aware routing in smart cities. Its
congestion modelling layer can be adapted to multimodal
transportation systems, covering cars, buses, and emergency
vehicles, thereby supporting holistic mobility planning. The
visualisation module can also be scaled to interactive 3D or
AR-based navigation systems, offering greater interpretability
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for both end users and urban planners. Finally, integration with
autonomous vehicle routing frameworks and intelligent
transportation systems would position the model as a practical
and scalable solution for next-generation urban-traffic
management.
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