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Abstract Manuscript Information 

 

Performance, fault tolerance, and resilience testing of distributed systems are difficult as they 

add complexity and scalability concerns. Most of the current techniques use the cloud 

infrastructure along with automatic fault injection and XML-based scenarios, which are 

expensive and complicated to implement, requiring a lot of resources. The existing approaches 

are resource-intensive, dependent on cloud infrastructure, and complicated management of test 

scenarios. These problems ultimately prevent the cost-effectiveness and scalability in the testing 

of distributed systems. This paper describes a lightweight testing framework based on 

virtualization, containerization, fault injection, and YAML scenarios. This method is not cloud-

dependent for reduced resources and simplified test scenario management using YAML, thereby 

achieving affordable, more efficient testing. This method is tested for throughput under normal 

conditions at 1200 requests per second and gets disturbed to 800 requests per second in the event 

of fault injections. The latency appears uniform at 150 Ms during normal conditions, it increases 

to 450 ms in the case of faults. Log analysis reveals important patterns in several types of failures, 

for example, network latency, node failures, etc., to improve precision in improvements. This 

framework obtains 98% of system availability and reduces the mean time to detect (MTTD) by 

14 hours and the average time to repair (MTTR) to 8 hours. The proposed approach shows 

improved resource efficiency, cost-effectiveness, and ease of implementation compared with 

cloud-based techniques while providing similar performance metrics. This framework offers 

organizations with limited resources the opportunity to test distributed systems as highly 

scalable, lightweight, and cost-efficient solutions that will cut down dependence on cloud 

infrastructure. The plan includes integrating machine learning for adaptive fault injection and 

monitoring to achieve better scalability and performance. 
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1. INTRODUCTION 

Numerous innovations within the ambit of Artificial Intelligence 

(AI) have enhanced diagnosis in the medical sciences, data 

security, and automation activity. These technologies depend on 

machine learning, besides big data. The general being confronted 

challenges include those of data privacy, security, scalability, 

and computational limitations, which still require innovative 

solutions that ensure maximum performance optimization and 

reliability. Mobile Health (m-Health) has revolutionized 

healthcare by providing monitoring of patients and accessing 

their medical records remotely [1]. Cloud computing adds its own 

security and privacy enlightenment into the fold, as it would 
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require biometric authentication and safe transmission methods 

for sensitive patient data. Magnetic Resonance Imaging also 

widely employed for tumor detection, is compromised in 

diagnosis by noise and inconsistencies in scans. Now machine 

learning techniques have come up to enhance the preprocessing 

and classification of images for better and much more 

dependable identification of the tumor [2]. 

The electric traction systems gain simulation using artificial 

neural networks, electrothermal inverter models, and finite 

element analysis for energy optimization and thermal 

performance enhancement in electric vehicles [3]. It improves the 

system efficiency but at the same time raises the jury on security 

and privacy issues, particularly in multi-cloud environments. 

Newer authentication and privacy-preserving mechanisms would 

strengthen information protection in distributed systems [4]. 

Software testing also has several other challenges regarding 

complete test coverage which could be overcome by integrating 

a language model pre-trained with evolutionary algorithms for 

test case generation [5]. Artificial Intelligence (AI) powers 

software as a medical device (SaMD) has to be surveillance post-

marketing for safety and compliance. Risk assessment and 

clinical follow-up go hand in hand with regulatory compliance 

and patient safety [6]. Accurate channel state information (CSI) is 

critically needed in 5G communications millimeter-wave 

networks which can be optimized with backpropagation neural 

networks (BPNN) and generative adversarial networks (GANs) 
[7]. The digital economy is a prime factor in industrial structure 

upgrades while fostering sustainable entrepreneurial 

development [8]. Knowledge Management (KM) is a system that, 

incorporating adaptive modeling techniques, could sustain 

strategic business planning [9]. Big data analytics in e-commerce 

are promoting product mapping and competitive insights on 

behalf of SMEs [10]. Cloud-GIS emergency command systems 

enhance earthquake response capability through high-

performance data processes [11]. Blockchain-integrated database 

management gives extra financial security to healthcare 

transactions [12].  Data analytics and statistical modeling in e-

learning applications enhance learning outcomes with the safety 

of data entrusted to them [13]. Lung cancer detection and risk 

assessment are dependent on deep learning techniques of medical 

imaging and analysis of genetic data [14]. The management of 

chronic kidney disease (CKD) is aided by the probabilistic 

neuro-fuzzy system integrated with AI, therefore enhancing 

diagnosis and automation in monitoring [15]. In response to these 

developments and challenges, this work proposes an integrated 

approach utilizing AI, blockchain, and cloud computing to 

enhance security, efficiency, and scalability. With data 

processing, predictive analytics, and automation in scope, our 

framework provides a truly transformative solution in diverse 

domains that promotes better decision-making, resource 

optimization, and reliability in the overall system. 

 

The Proposed Method Main Contribution 

Design a lightweight testing framework that relies on 

virtualization, containerization, and YAML scenarios, devoid of 

cloud dependency, and resource conservation. Implement 

automating fault injection techniques with Chaos Mesh and 

custom-written scripts to inject real-life failures capable of 

improving resilience and fault tolerance. Evaluate System 

performance evaluation based on metrics like throughput, 

latency, and fault recovery rate. The system must be proven to 

sustain heavy loads. Demonstrate cost-effective, scalable, and 

less complex implementation, ensuring availability in resource-

limited settings. 

 

2. LITERATURE REVIEW 

Integrating Automation and Intelligent Techniques into Cloud 

Environments, Distributed Systems, and Network Infrastructures 

has been under study. This section encompasses a survey of 

reviews relevant to our work, extracting major contributions as 

well as limitations from areas such as malware detection, 

software testing, cloud optimization, and cyber security. Devi [16] 

describes advanced techniques of fault injection to test resilience 

in cloud environments with special emphasis on AWS-based 

tools to detect and mitigate failures. This is because the focus on 

AWS-specific infrastructure makes it less applicable to other 

cloud platforms. The same approach is followed by Deevi [17] in 

the design of a machine learning-based malware detection 

framework using Support Vector Regression, LSTMs, and 

Hidden Markov Models. Although better accuracy is achieved 

by the model, it is a heavy burden on context computational 

power and shows weakness to zero-day threats. Chetlapalli [18] 

proposes a business intelligence transformation framework 

based on AI-driven data analytics; however, this framework does 

not cover data privacy, regulatory compliance, or scalability 

issues. Allur [19], with a load-balancing strategy based on AI and 

machine learning, demonstrates efficient resource allocation in 

cloud data centers. With the study's effectiveness in workload 

optimization, there were implementation issues as a consequence 

of extra computational overhead with security risks. Allur [20] 

builds yet another story through which genetic algorithm 

principles are folded into swarm intelligence techniques to 

ensure better efficiency in software testing within big data 

environments. Although coverage improved substantially, 

scalability issues arise because of the complexity of the hybrid 

optimization methods involved. The last contribution to 

examining performance management in mobile networks 

through big data analytics is Allur [21] on the themes of anomaly 

detection and resource allocation. However, computationally 

expensive techniques have limited their implementation in 

dynamic network conditions. Allur [22] implements big data 

analytics, DSS, and MILP to optimize agricultural supply chain 

management by improving efficiency and foresight. However, 

the challenges of data processing requirements and the ability to 

scale in larger networks remain unresolved. Another study by 

Allur [23] describes a deep-learning-based phishing detection 

system using stacked autoencoders and SVM. While the 

detection accuracy is increased, it requires frequent updates to 

adapt to evolving phishing strategies. Dondapati [24] proposes a 

cloud-based software testing framework that integrates 

automated fault injection with XML-based test scenarios for 

enhancing robustness. While the study indicates enhanced 
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efficiency, it is also dependent on the cloud infrastructure, which 

is liable to introduce latency issues and costs. At the same time, 

Dondapati [25] investigates the enhancement of test case 

prioritization in regression testing using neural networks 

harmonized with heuristic strategies. The methodology reduces 

the overhead for fault detection but raises implementation issues 

when tested.  A cloud security framework integrating the 

Immune Cloning Algorithm with data-driven threat mitigation is 

proposed by Kodadi [26]. The detection of threats improved by 

this approach but is limited to high computational resource 

availability, which is not feasible in low-power environments. 

Finally, Kodadi [27] applies probabilistic modeling for the 

optimization of software deployment verification in the cloud to 

ensure QoS compliance. Nevertheless, the method relies on 

predefined non-functional requirements, which complicates its 

adaptation to changing cloud settings. Altogether, these studies 

showed the potential of AI, machine learning, and automated 

methodologies in cloud computing, cybersecurity, and software 

testing, though with a myriad of challenges surrounding 

computational complexity, real-world scalability, and 

adaptability to dynamic environments warranting further 

exploration into efficient, flexible, and cost-effective solutions. 

 

3. Problem Statement 

Deevi [17] has shown how malware detection frameworks have 

limitations in terms of needing high computational power to 

detect zero-day threats. Allur [23] cites the updating need for  

 

phishing detection systems to cope with the constantly evolving 

cyber threats. Kodadi [26] wrote that cloud security frameworks 

need high computational resources which limit deployment in 

low-power environments. The method suggested is a solution to 

all of these by embedding an optimized AI-driven security 

framework that keeps enhancing the detection ability of malware 

while minimizing computational overhead with dynamically 

adaptive features against new threats, thus making the whole 

system efficient and scalable in threat mitigation. 

 

4. PROPOSED METHODOLOGY 

The goal of the proposed new methodology is to create a 

framework called the Distributed System Testing Framework 

that has been developed to assess the performance, resilience, 

and appropriate handling of fault conditions in distributed 

systems. The architecture is designed on lightweight 

virtualization (KVM), containerization (Docker), and 

orchestration (k3s) for scalable and isolated test environments. 

Test scenarios are described in YAML files comprising input 

data, expected results, and fault conditions from the "Distributed 

System Logs and Metrics Dataset." The fault injections were 

achieved using Chaos Mesh and customized scripts, which 

simulate real-world failures. Logs were collected using Fluent 

and File beat for analysis. Through this, testing becomes data-

reproducible, realistic, and hence, possible under any possible 

conditions. Evaluation of the distributed systems will, thus, be 

very comprehensive. The overall flow is depicted in Figure 1. 

 

 
 

Figure 1: Architecture Diagram for The Proposed Method 

 

4.1. Data Collection 

The dataset that is going to be used with this proposed 

methodology is the "Distributed System Logs and Metrics 

Dataset" [28]. It consists of timestamps, node IDs, types of events 

(request, response, error), latency, throughput, and error codes. 

There are also various synthetic fault conditions like node failure 

and network delay. The dataset has served to build up test 

scenarios defined in the YAML files with nearly realistic real 

inputs for normal and fault conditions. It is also the groundwork 

for fault injection, performance evaluation, and resilience testing 

to assess the behaviour of the system against various models. 

Hence, the method in this case ensures that a distributed system 

is tested in a data-oriented, realistic, and reproducible manner. 
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4.2. Data Preprocessing 

Preprocessing is done for data integrity and usability before a test 

run. The major steps included are; 

 

Missing Value Treatment: Missing data points are replaced 

using mean imputation as shown in Equation (1). 

 

𝑥𝑖 =
1

𝑁
∑  𝑁
𝑗=1 𝑥𝑗………………… (1) 

where 𝑥𝑖 is the imputed value, and 𝑥𝑗 are the observed values in 

the dataset (Equation 1). 

 

Data Normalization: Given that system performance metrics 

differ quite wildly from one another (latency, throughput), we 

normalize all these to an average range of [0,1] using Min-Max 

scaling, which is represented as: 

 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥min

𝑥max−𝑥min
 ………………. (2) 

 

where 𝑥 is the original value, and 𝑥min, 𝑥max are the minimum 

and maximum values in the dataset, respectively (Equation 2). 

 

Categorical Encoding: Categorical data (event types) were 

transformed into a numerical format using one hot encoding. 

 

𝑦encoded = {
1,  if event type matches category 

0,  otherwise 
……… (3) 

 

where 𝑦encoded  represents the binary encoding for categorical 

variables (Equation 3). The preprocessed dataset is then 

integrated into the testing environment as structured input data. 

 

4.3. Distributed System Testing Framework Using 

Lightweight Virtualization, Containerization, and Fault 

Injection 

Environment Setup 

The testing environment has been created with KVM-based 

virtualization to emulate nodes in the distributed system, and it 

uses Docker containerization in modular service deployment 

within orchestration with k3s, allowing the running of containers 

over a virtualized infrastructure on demand. Preprocessed data 

can also be loaded into the containerized environment to imitate 

real-world conditions. Resource allocation becomes important in 

a scalability aspect for the overall allocated resource for 

containers which is calculated as follows in Equation (4):  

 

𝑅alloc = ∑  𝑁
𝑖=1 𝑟𝑖………………… (4) 

where 𝑅alloc  is the total allocated resources, and 𝑟𝑖 represents 

resource allocation for each container (Equation 4). 

 

Test Scenario Definition 

Test scenarios are then structured into YAML-based 

configuration files for the assessment of the fault tolerance of the 

system. Each scenario includes a combination of input logs, 

expected behaviors from the system, and specific fault conditions 

like node failures and network delays. All of these scenarios turn 

out to be algebraically represented as in Equation (5): 

 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}…………… (5) 

where S represents the set of test scenarios, and is denoted by 𝑠𝑖  
as an individual scenario (Equation 5). 

 

Fault Injection 

To test how much the system can withstand, there is a fault 

injection using Chaos Mesh, which is a chaos engineering tool 

native in Kubernetes, that allows building-controlled 

environments so that different types of failures could be 

simulated including spikes in network, crashing of containers, 

and resource exhaustion. At the further lower levels, additional 

faults are injected with the help of custom Bash scripts. Fault 

injection is a rate defined as in Equation (6): 

 

𝐹rate =
𝑁faults 

𝑁total 
 …………………. (6) 

 

where 𝑁faults  is the number of faults injected, and 𝑁total  is the 

total number of test cases (Equation 6). 

 

Test Execution and Logging 

Logging and performance monitoring become necessary to study 

how the systems behave after executing test cases. Fluentd and 

Filebeat have been set up to collect logs from across the 

distributed containers and capture everything from faults being 

triggered to recovery times as well as error distributions. The log 

collection is mathematically stated as in Equation (7): 

 

𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑛}………………. (7) 

 

where 𝐿 represents the collected logs from distributed nodes 

(Equation 7). 

 

5. RESULTS 

In the results section, the outcomes of the proposed testing 

framework are discussed, focusing on system performance, fault 

tolerance, and resilience under different conditions. Metrics such 

as throughput, latency rates are examined to generate insight. 

 

5.1. Performance Evaluation 

The graph showing the Throughput Comparison Under Normal 

and Fault Conditions is intended to understand how effective the 

system is on its throughput when assessed against normal as well 

as fault conditions. The aspect of throughput measures the 

requests effective per second, thereby reflecting the efficiency 

that a particular system has. High throughput under normal 

conditions indicates optimal system function, while during 

faults, such as node failures, decreased performance on the 

throughput meter shows that the system would tend to exhibit its 

graceful features under stress. As demonstrated in Figure 1, the 

new method continues to show better throughput under normal 
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conditions with throttled reductions on faults, demonstrating 

resiliency. 

 

Figure 2: Throughput Comparison Under Normal and Fault 

Conditions 

Latency Comparison Under Normal and Fault Conditions shown 

in Figure 3, the variation in the latency over time for the 

considered system when it is under normal operation models or 

during faults. Under the normal mode, the low and stable latency 

indicates that the system works efficiently; latency increases 

alarmingly because of node failure or network delays under fault 

conditions and indicates that the system will respond to increased 

stress. This comparison shows the effect that faults induce on the 

responsiveness of a system and thus helps establish fault 

tolerance. 
 

Figure 2: Latency Comparison Under Normal and Fault Conditions 
 

 
 

Figure 3: Latency Comparison Under Normal and Fault 

Conditions 

The Log Analysis - Common Error Patterns represented in 

Figure 4, the distribution of failure causes in the system that is 

possibly responsible for network latency, node failure, or disk 

overload. It espouses opportunities to understand the most 

common issues causing adverse system performance. The 

analysis also helps to pinpoint the most critical failure patterns 

for prioritizing system improvement interventions. 
 

Figure 4: Log Analysis-Common Error Patterns 
 

 
 

5.2. Comparative Analysis 

The method proposed certainly stands in contrast to fault 

injection, cloud computing, and XML-based scenarios [24] as all 

three prove to be significantly inferior in major aspects of 

metrics. The number of resources utilized through our method 

was reduced to 62.5%, through lightweight virtualization and 

containerization, unlike the usage of cloud infrastructure. A Gain 

of 10% is made in test scenario management due to the 

readability and easier usage of YAML over XML. Our method 

is easier to deploy with a 37.5% reduction in implementation 

complexity. This further translates to a 62.5% reduction in costs 

by avoiding cloud dependencies and making use of local or on-

premises resources. Thus, this all proves our method is more 

resource-efficient, economical, and easy their implement, so it 

can be fruitful for making tests of distributed systems shown in 

Table 1. 

 
Table 1: Comparison of Cloud Infrastructure, Automated Fault Injection, and XML Scenarios vs. The Proposed Method 

 

Metrics 
Cloud Infrastructure, Automated Fault 

Injection, and XML Scenarios 

The Proposed Method 

Lightweight Virtualization, Fault Injection, and 

YAML Scenarios 

Improvement 

Resource Efficiency High resource usage (8/10) Low resource usage (3/10) 62.5% reduction 

Test Scenario Management XML (70% improvement) YAML (80% improvement) 10% improvement 

Ease of Implementation Complexity score: 8/10 Complexity score: 5/10 37.5% reduction 

Cost Cost score: 8/10 Cost score: 3/10 62.5% reduction 

6. CONCLUSION AND FUTURE WORK 

The technique proposed to revolutionize the use of cloud 

computing and automated fault injection in scenarios by XML is 

outstanding in all dimensions. It is 62.5% less consuming 

resources and improvements in test scenario management rank 

by 10% while the implementation complexity dips by 37.5%. 

Moreover, it also reduces costs by 62.5%. All these 

enhancements underscore the efficiency, cost-effectiveness, and 

ease of deployment, making it an applicable solution to test 

distributed systems. Most importantly, results such as higher 

throughput under normal conditions, controlled latency increases 

during faults, and effective log analysis validate its robustness 

and fault tolerance. Future work may take into account using 

machine learning for adaptive fault injection and online 

monitoring as an enhancement of the framework and as an 

addition to its scalability.  

 

 

https://creativecommons.org/licenses/by/4.0/


Int. Jr. of Contemp. Res. in Multi.    Volume 4 Issue 2 [Mar- Apr] Year 2025 
 

44 
© 2025 Aravindhan Kurunthachalam. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY NC ND). https://creativecommons.org/licenses/by/4.0/  

 

REFERENCES 

1. Deevi DP. Improving patient data security and privacy in 

mobile health care: A structure employing WBANs, multi-

biometric key creation, and dynamic metadata rebuilding. 

Int J Eng Res Sci Technol. 2020 Dec;16(4):21–31. 

2. Deevi DP. Developing an integrated machine learning 

framework for improved brain tumor identification in MRI 

scans. Curr Sci. 2024 Dec. 

3. Deevi DP. Artificial neural network enhanced real-time 

simulation of electric traction systems incorporating electro-

thermal inverter models and FEA. Int J Eng. 2020 Jul;10(3). 

4. Chetlapalli H. Novel cloud computing algorithms: 

Improving security and minimizing privacy risks. J Sci 

Technol (JST). 2021 Mar;6(2):Art. no. 2. 

5. Chetlapalli H. Enhancing test generation through pre-

trained language models and evolutionary algorithms: An 

empirical study. 2021 Jun;10(1). 

6. Chetlapalli H. Enhanced post-marketing surveillance of AI 

software as a medical device: Combining risk-based 

methods with active clinical follow-up. 2023 Jun;11(6). 

7. Dondapati K. Leveraging backpropagation neural networks 

and generative adversarial networks to enhance channel 

state information synthesis in millimetre wave networks. 

2024 Oct. doi: 10.5281/ZENODO.13994672. 

8. Deevi DP, Allur NS, Dondapati K, Chetlapalli H, Kodadi S, 

Perumal T. The impact of the digital economy on industrial 

structure upgrading and sustainable entrepreneurial growth. 

Electron Commer Res. 2024 Sep. doi: 10.1007/s10660-024-

09907-5. 

9. Allur NS, Deevi DP, Dondapati K, Chetlapalli H, Kodadi S, 

Perumal T. Role of knowledge management in the 

development of effective strategic business planning for 

organizations. Comput Math Organ Theory. 2025 Jan. doi: 

10.1007/s10588-025-09397-2. 

10. Kodadi S. Big data analytics and innovation in e-commerce: 

Current insights, future directions, and a bottom-up 

approach to product mapping using TF-IDF. Int J Inf 

Technol Comput Eng. 2022 May;10(2):110–123. 

11. Kodadi S. High-performance cloud computing and data 

analysis methods in the development of earthquake 

emergency command infrastructures. 2022;10(9726). 

12. Kodadi S. Integrating blockchain with database 

management systems for secure accounting in the financial 

and banking sectors. J Sci Technol (JST). 2023 

Sep;8(9):Art. no. 9. 

13. Kodadi S. Integrating statistical analysis and data analytics 

in e-learning apps: Improving learning patterns and security. 

2024 Oct. doi: 10.5281/ZENODO.13994651. 

14. Dondapati K. Lung cancer prediction using deep learning. 

Int J HRM Organ Behav. 2019 Jan;7(1):1–10. 

15. Deevi DP, Allur NS, Dondapati K, Chetlapalli H, Kodadi S, 

Ajao LA. AI-integrated probabilistic neuro-fuzzy 

TemporalFusionNet for robotic IoMT automation in chronic 

kidney disease detection and prediction. In: 2024 

International Conference on Emerging Research in 

Computational Science (ICERCS). 2024 Dec. p. 1–7. doi: 

10.1109/ICERCS63125.2024.10895279. 

16. Devi DP. Continuous resilience testing in AWS 

environments with advanced fault injection techniques. 

2023;11(1). 

17. Deevi DP. Real-time malware detection via adaptive 

gradient support vector regression combined with LSTM 

and hidden Markov models. J Sci Technol (JST). 2020 

Aug;5(4):Art. no. 4. 

18. Chetlapalli H, Perumal T. Driving business intelligence 

transformation through AI and data analytics: A 

comprehensive framework. Curr Sci. 2024 Mar. 

19. Allur NS. Optimizing cloud data center resource allocation 

with a new load-balancing approach. 2021;9(2). Available 

from: 

https://ijitce.com/ijitceadmin/upload/ijlbps_66edb4d08428

e.pdf 

20. Allur NS. Genetic algorithms for superior program path 

coverage in software testing related to big data. Int J Inf 

Technol Comput Eng. 2019 Dec;7(4):99–112. 

21. Allur NS. Enhanced performance management in mobile 

networks: A big data framework incorporating DBSCAN 

speed anomaly detection and CCR efficiency assessment. 

2020;8(9726). Available from: 

https://www.jcsjournal.com/admin/uploads/Enhanced%20

Performance%20Management%20in%20Mobile%20Netw

orks%20A%20Big%20Data%20Framework%20Incorporat

ing%20DBSCAN%20Speed%20Anomaly%20Detection%

20and%20CCR%20Efficiency%20Assessment.pdf 

22. Allur NS, Victoria W. Big data-driven agricultural supply 

chain management: Trustworthy scheduling optimization 

with DSS and MILP techniques. Curr Sci. 2020;8(4). 

23. Allur NS. Phishing website detection based on 

multidimensional features driven by deep learning: 

Integrating stacked autoencoder and SVM. J Sci Technol 

(JST). 2020 Dec;5(6):Art. no. 6. 

24. Dondapati K. Robust software testing for distributed 

systems using cloud infrastructure, automated fault 

injection, and XML scenarios. 2020;8(2). 

25. Dondapati K. Integrating neural networks and heuristic 

methods in test case prioritization: A machine learning 

perspective. Int J Eng. 2020 Sep;10(3). 

26. Kodadi S. Advanced data analytics in cloud computing: 

Integrating immune cloning algorithm with D-TM for threat 

mitigation. Int J Eng Res Sci Technol. 2020 Jun;16(2):30–

42. 

27. Kodadi S. Optimizing software development in the cloud: 

Formal QoS and deployment verification using probabilistic 

methods. 2021. 

https://creativecommons.org/licenses/by/4.0/
https://ijitce.com/ijitceadmin/upload/ijlbps_66edb4d08428e.pdf
https://ijitce.com/ijitceadmin/upload/ijlbps_66edb4d08428e.pdf
https://www.jcsjournal.com/admin/uploads/Enhanced%20Performance%20Management%20in%20Mobile%20Networks%20A%20Big%20Data%20Framework%20Incorporating%20DBSCAN%20Speed%20Anomaly%20Detection%20and%20CCR%20Efficiency%20Assessment.pdf
https://www.jcsjournal.com/admin/uploads/Enhanced%20Performance%20Management%20in%20Mobile%20Networks%20A%20Big%20Data%20Framework%20Incorporating%20DBSCAN%20Speed%20Anomaly%20Detection%20and%20CCR%20Efficiency%20Assessment.pdf
https://www.jcsjournal.com/admin/uploads/Enhanced%20Performance%20Management%20in%20Mobile%20Networks%20A%20Big%20Data%20Framework%20Incorporating%20DBSCAN%20Speed%20Anomaly%20Detection%20and%20CCR%20Efficiency%20Assessment.pdf
https://www.jcsjournal.com/admin/uploads/Enhanced%20Performance%20Management%20in%20Mobile%20Networks%20A%20Big%20Data%20Framework%20Incorporating%20DBSCAN%20Speed%20Anomaly%20Detection%20and%20CCR%20Efficiency%20Assessment.pdf
https://www.jcsjournal.com/admin/uploads/Enhanced%20Performance%20Management%20in%20Mobile%20Networks%20A%20Big%20Data%20Framework%20Incorporating%20DBSCAN%20Speed%20Anomaly%20Detection%20and%20CCR%20Efficiency%20Assessment.pdf


Int. Jr. of Contemp. Res. in Multi.    Volume 4 Issue 2 [Mar- Apr] Year 2025 
 

45 
© 2025 Aravindhan Kurunthachalam. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY NC ND). https://creativecommons.org/licenses/by/4.0/  

 

28. Synthetic log data of distributed system [Internet]. 

Available from: 

https://www.kaggle.com/datasets/shubhampatil1999/synth

etic-log-data-of-distributed-system 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Creative Commons (CC) License 

This article is an open access article distributed under the 

terms and conditions of the Creative Commons Attribution 

(CC BY 4.0) license. This license permits unrestricted use, 

distribution, and reproduction in any medium, provided the 

original author and source are credited. 

About the Corresponding Author 

 

Dr. K. Aravindhan is an Associate 

Professor at REVA University, 

specializing in Computer Science 

and Engineering. His research 

interests include Vehicular Ad Hoc 

Networks (VANETs), Internet of 

Things (IoT), machine learning, 

and cloud computing. With over 16 

years of academic experience, he 

has published numerous papers in 

SCI and Scopus-indexed journals, 

authored multiple books, and holds 

several patents. He has served as a 

guest editor and reviewer for 

reputed journals and has been 

recognized with awards such as the 

Dr. A.P.J. Abdul Kalam Best 

Young Scientist Award. 

https://creativecommons.org/licenses/by/4.0/
https://www.kaggle.com/datasets/shubhampatil1999/synthetic-log-data-of-distributed-system
https://www.kaggle.com/datasets/shubhampatil1999/synthetic-log-data-of-distributed-system

