
Int. Jr. of Contemp. Res. in Multi. Volume 4 Issue 2 [Mar- Apr] Year 2025

39
© 2025 Aravindhan Kurunthachalam. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY NC ND). https://creativecommons.org/licenses/by/4.0/

 Research Article

Efficient Distributed System Testing Using Lightweight Virtualization,

Fault Injection, And YAML Scenarios

Aravindhan Kurunthachalam*

Associate Professor, School of Computing and Information Technology, REVA University, Bangalore, Karnataka, India

Corresponding Author: Aravindhan Kurunthachalam DOI: https://doi.org/10.5281/zenodo.15041036

Abstract Manuscript Information

Performance, fault tolerance, and resilience testing of distributed systems are difficult as they

add complexity and scalability concerns. Most of the current techniques use the cloud

infrastructure along with automatic fault injection and XML-based scenarios, which are

expensive and complicated to implement, requiring a lot of resources. The existing approaches

are resource-intensive, dependent on cloud infrastructure, and complicated management of test

scenarios. These problems ultimately prevent the cost-effectiveness and scalability in the testing

of distributed systems. This paper describes a lightweight testing framework based on

virtualization, containerization, fault injection, and YAML scenarios. This method is not cloud-

dependent for reduced resources and simplified test scenario management using YAML, thereby

achieving affordable, more efficient testing. This method is tested for throughput under normal

conditions at 1200 requests per second and gets disturbed to 800 requests per second in the event

of fault injections. The latency appears uniform at 150 Ms during normal conditions, it increases

to 450 ms in the case of faults. Log analysis reveals important patterns in several types of failures,

for example, network latency, node failures, etc., to improve precision in improvements. This

framework obtains 98% of system availability and reduces the mean time to detect (MTTD) by

14 hours and the average time to repair (MTTR) to 8 hours. The proposed approach shows

improved resource efficiency, cost-effectiveness, and ease of implementation compared with

cloud-based techniques while providing similar performance metrics. This framework offers

organizations with limited resources the opportunity to test distributed systems as highly

scalable, lightweight, and cost-efficient solutions that will cut down dependence on cloud

infrastructure. The plan includes integrating machine learning for adaptive fault injection and

monitoring to achieve better scalability and performance.

▪ ISSN No: 2583-7397

▪ Received: 29-01-2025

▪ Accepted: 27-02-2025

▪ Published: 17-03-2025

▪ IJCRM:4(2); 2025: 39-45

▪ ©2025, All Rights Reserved

▪ Plagiarism Checked: Yes

▪ Peer Review Process: Yes

How to Cite this Article

Kurunthachalam A. Efficient

Distributed System Testing Using

Lightweight Virtualization, Fault

Injection, And YAML Scenarios. Int J

Contemp Res Multidiscip.

2025;4(2):39-45.

Access this Article Online

www.multiarticlesjournal.com

KEYWORDS: YAML, MTTR, MTTD, m-Health, artificial neural networks, scalability

1. INTRODUCTION

Numerous innovations within the ambit of Artificial Intelligence

(AI) have enhanced diagnosis in the medical sciences, data

security, and automation activity. These technologies depend on

machine learning, besides big data. The general being confronted

challenges include those of data privacy, security, scalability,

and computational limitations, which still require innovative

solutions that ensure maximum performance optimization and

reliability. Mobile Health (m-Health) has revolutionized

healthcare by providing monitoring of patients and accessing

their medical records remotely [1]. Cloud computing adds its own

security and privacy enlightenment into the fold, as it would

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.15041036
www.multiarticlesjournal.com

Int. Jr. of Contemp. Res. in Multi. Volume 4 Issue 2 [Mar- Apr] Year 2025

40
© 2025 Aravindhan Kurunthachalam. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY NC ND). https://creativecommons.org/licenses/by/4.0/

require biometric authentication and safe transmission methods

for sensitive patient data. Magnetic Resonance Imaging also

widely employed for tumor detection, is compromised in

diagnosis by noise and inconsistencies in scans. Now machine

learning techniques have come up to enhance the preprocessing

and classification of images for better and much more

dependable identification of the tumor [2].

The electric traction systems gain simulation using artificial

neural networks, electrothermal inverter models, and finite

element analysis for energy optimization and thermal

performance enhancement in electric vehicles [3]. It improves the

system efficiency but at the same time raises the jury on security

and privacy issues, particularly in multi-cloud environments.

Newer authentication and privacy-preserving mechanisms would

strengthen information protection in distributed systems [4].

Software testing also has several other challenges regarding

complete test coverage which could be overcome by integrating

a language model pre-trained with evolutionary algorithms for

test case generation [5]. Artificial Intelligence (AI) powers

software as a medical device (SaMD) has to be surveillance post-

marketing for safety and compliance. Risk assessment and

clinical follow-up go hand in hand with regulatory compliance

and patient safety [6]. Accurate channel state information (CSI) is

critically needed in 5G communications millimeter-wave

networks which can be optimized with backpropagation neural

networks (BPNN) and generative adversarial networks (GANs)
[7]. The digital economy is a prime factor in industrial structure

upgrades while fostering sustainable entrepreneurial

development [8]. Knowledge Management (KM) is a system that,

incorporating adaptive modeling techniques, could sustain

strategic business planning [9]. Big data analytics in e-commerce

are promoting product mapping and competitive insights on

behalf of SMEs [10]. Cloud-GIS emergency command systems

enhance earthquake response capability through high-

performance data processes [11]. Blockchain-integrated database

management gives extra financial security to healthcare

transactions [12]. Data analytics and statistical modeling in e-

learning applications enhance learning outcomes with the safety

of data entrusted to them [13]. Lung cancer detection and risk

assessment are dependent on deep learning techniques of medical

imaging and analysis of genetic data [14]. The management of

chronic kidney disease (CKD) is aided by the probabilistic

neuro-fuzzy system integrated with AI, therefore enhancing

diagnosis and automation in monitoring [15]. In response to these

developments and challenges, this work proposes an integrated

approach utilizing AI, blockchain, and cloud computing to

enhance security, efficiency, and scalability. With data

processing, predictive analytics, and automation in scope, our

framework provides a truly transformative solution in diverse

domains that promotes better decision-making, resource

optimization, and reliability in the overall system.

The Proposed Method Main Contribution

Design a lightweight testing framework that relies on

virtualization, containerization, and YAML scenarios, devoid of

cloud dependency, and resource conservation. Implement

automating fault injection techniques with Chaos Mesh and

custom-written scripts to inject real-life failures capable of

improving resilience and fault tolerance. Evaluate System

performance evaluation based on metrics like throughput,

latency, and fault recovery rate. The system must be proven to

sustain heavy loads. Demonstrate cost-effective, scalable, and

less complex implementation, ensuring availability in resource-

limited settings.

2. LITERATURE REVIEW

Integrating Automation and Intelligent Techniques into Cloud

Environments, Distributed Systems, and Network Infrastructures

has been under study. This section encompasses a survey of

reviews relevant to our work, extracting major contributions as

well as limitations from areas such as malware detection,

software testing, cloud optimization, and cyber security. Devi [16]

describes advanced techniques of fault injection to test resilience

in cloud environments with special emphasis on AWS-based

tools to detect and mitigate failures. This is because the focus on

AWS-specific infrastructure makes it less applicable to other

cloud platforms. The same approach is followed by Deevi [17] in

the design of a machine learning-based malware detection

framework using Support Vector Regression, LSTMs, and

Hidden Markov Models. Although better accuracy is achieved

by the model, it is a heavy burden on context computational

power and shows weakness to zero-day threats. Chetlapalli [18]

proposes a business intelligence transformation framework

based on AI-driven data analytics; however, this framework does

not cover data privacy, regulatory compliance, or scalability

issues. Allur [19], with a load-balancing strategy based on AI and

machine learning, demonstrates efficient resource allocation in

cloud data centers. With the study's effectiveness in workload

optimization, there were implementation issues as a consequence

of extra computational overhead with security risks. Allur [20]

builds yet another story through which genetic algorithm

principles are folded into swarm intelligence techniques to

ensure better efficiency in software testing within big data

environments. Although coverage improved substantially,

scalability issues arise because of the complexity of the hybrid

optimization methods involved. The last contribution to

examining performance management in mobile networks

through big data analytics is Allur [21] on the themes of anomaly

detection and resource allocation. However, computationally

expensive techniques have limited their implementation in

dynamic network conditions. Allur [22] implements big data

analytics, DSS, and MILP to optimize agricultural supply chain

management by improving efficiency and foresight. However,

the challenges of data processing requirements and the ability to

scale in larger networks remain unresolved. Another study by

Allur [23] describes a deep-learning-based phishing detection

system using stacked autoencoders and SVM. While the

detection accuracy is increased, it requires frequent updates to

adapt to evolving phishing strategies. Dondapati [24] proposes a

cloud-based software testing framework that integrates

automated fault injection with XML-based test scenarios for

enhancing robustness. While the study indicates enhanced

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi. Volume 4 Issue 2 [Mar- Apr] Year 2025

41
© 2025 Aravindhan Kurunthachalam. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY NC ND). https://creativecommons.org/licenses/by/4.0/

efficiency, it is also dependent on the cloud infrastructure, which

is liable to introduce latency issues and costs. At the same time,

Dondapati [25] investigates the enhancement of test case

prioritization in regression testing using neural networks

harmonized with heuristic strategies. The methodology reduces

the overhead for fault detection but raises implementation issues

when tested. A cloud security framework integrating the

Immune Cloning Algorithm with data-driven threat mitigation is

proposed by Kodadi [26]. The detection of threats improved by

this approach but is limited to high computational resource

availability, which is not feasible in low-power environments.

Finally, Kodadi [27] applies probabilistic modeling for the

optimization of software deployment verification in the cloud to

ensure QoS compliance. Nevertheless, the method relies on

predefined non-functional requirements, which complicates its

adaptation to changing cloud settings. Altogether, these studies

showed the potential of AI, machine learning, and automated

methodologies in cloud computing, cybersecurity, and software

testing, though with a myriad of challenges surrounding

computational complexity, real-world scalability, and

adaptability to dynamic environments warranting further

exploration into efficient, flexible, and cost-effective solutions.

3. Problem Statement

Deevi [17] has shown how malware detection frameworks have

limitations in terms of needing high computational power to

detect zero-day threats. Allur [23] cites the updating need for

phishing detection systems to cope with the constantly evolving

cyber threats. Kodadi [26] wrote that cloud security frameworks

need high computational resources which limit deployment in

low-power environments. The method suggested is a solution to

all of these by embedding an optimized AI-driven security

framework that keeps enhancing the detection ability of malware

while minimizing computational overhead with dynamically

adaptive features against new threats, thus making the whole

system efficient and scalable in threat mitigation.

4. PROPOSED METHODOLOGY

The goal of the proposed new methodology is to create a

framework called the Distributed System Testing Framework

that has been developed to assess the performance, resilience,

and appropriate handling of fault conditions in distributed

systems. The architecture is designed on lightweight

virtualization (KVM), containerization (Docker), and

orchestration (k3s) for scalable and isolated test environments.

Test scenarios are described in YAML files comprising input

data, expected results, and fault conditions from the "Distributed

System Logs and Metrics Dataset." The fault injections were

achieved using Chaos Mesh and customized scripts, which

simulate real-world failures. Logs were collected using Fluent

and File beat for analysis. Through this, testing becomes data-

reproducible, realistic, and hence, possible under any possible

conditions. Evaluation of the distributed systems will, thus, be

very comprehensive. The overall flow is depicted in Figure 1.

Figure 1: Architecture Diagram for The Proposed Method

4.1. Data Collection

The dataset that is going to be used with this proposed

methodology is the "Distributed System Logs and Metrics

Dataset" [28]. It consists of timestamps, node IDs, types of events

(request, response, error), latency, throughput, and error codes.

There are also various synthetic fault conditions like node failure

and network delay. The dataset has served to build up test

scenarios defined in the YAML files with nearly realistic real

inputs for normal and fault conditions. It is also the groundwork

for fault injection, performance evaluation, and resilience testing

to assess the behaviour of the system against various models.

Hence, the method in this case ensures that a distributed system

is tested in a data-oriented, realistic, and reproducible manner.

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi. Volume 4 Issue 2 [Mar- Apr] Year 2025

42
© 2025 Aravindhan Kurunthachalam. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY NC ND). https://creativecommons.org/licenses/by/4.0/

4.2. Data Preprocessing

Preprocessing is done for data integrity and usability before a test

run. The major steps included are;

Missing Value Treatment: Missing data points are replaced

using mean imputation as shown in Equation (1).

𝑥𝑖 =
1

𝑁
∑  𝑁
𝑗=1 𝑥𝑗………………… (1)

where 𝑥𝑖 is the imputed value, and 𝑥𝑗 are the observed values in

the dataset (Equation 1).

Data Normalization: Given that system performance metrics

differ quite wildly from one another (latency, throughput), we

normalize all these to an average range of [0,1] using Min-Max

scaling, which is represented as:

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥min

𝑥max−𝑥min
 ………………. (2)

where 𝑥 is the original value, and 𝑥min, 𝑥max are the minimum

and maximum values in the dataset, respectively (Equation 2).

Categorical Encoding: Categorical data (event types) were

transformed into a numerical format using one hot encoding.

𝑦encoded = {
1, if event type matches category

0, otherwise
……… (3)

where 𝑦encoded represents the binary encoding for categorical

variables (Equation 3). The preprocessed dataset is then

integrated into the testing environment as structured input data.

4.3. Distributed System Testing Framework Using

Lightweight Virtualization, Containerization, and Fault

Injection

Environment Setup

The testing environment has been created with KVM-based

virtualization to emulate nodes in the distributed system, and it

uses Docker containerization in modular service deployment

within orchestration with k3s, allowing the running of containers

over a virtualized infrastructure on demand. Preprocessed data

can also be loaded into the containerized environment to imitate

real-world conditions. Resource allocation becomes important in

a scalability aspect for the overall allocated resource for

containers which is calculated as follows in Equation (4):

𝑅alloc = ∑  𝑁
𝑖=1 𝑟𝑖………………… (4)

where 𝑅alloc is the total allocated resources, and 𝑟𝑖 represents

resource allocation for each container (Equation 4).

Test Scenario Definition

Test scenarios are then structured into YAML-based

configuration files for the assessment of the fault tolerance of the

system. Each scenario includes a combination of input logs,

expected behaviors from the system, and specific fault conditions

like node failures and network delays. All of these scenarios turn

out to be algebraically represented as in Equation (5):

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}…………… (5)

where S represents the set of test scenarios, and is denoted by 𝑠𝑖
as an individual scenario (Equation 5).

Fault Injection

To test how much the system can withstand, there is a fault

injection using Chaos Mesh, which is a chaos engineering tool

native in Kubernetes, that allows building-controlled

environments so that different types of failures could be

simulated including spikes in network, crashing of containers,

and resource exhaustion. At the further lower levels, additional

faults are injected with the help of custom Bash scripts. Fault

injection is a rate defined as in Equation (6):

𝐹rate =
𝑁faults

𝑁total
 …………………. (6)

where 𝑁faults is the number of faults injected, and 𝑁total is the

total number of test cases (Equation 6).

Test Execution and Logging

Logging and performance monitoring become necessary to study

how the systems behave after executing test cases. Fluentd and

Filebeat have been set up to collect logs from across the

distributed containers and capture everything from faults being

triggered to recovery times as well as error distributions. The log

collection is mathematically stated as in Equation (7):

𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑛}………………. (7)

where 𝐿 represents the collected logs from distributed nodes

(Equation 7).

5. RESULTS

In the results section, the outcomes of the proposed testing

framework are discussed, focusing on system performance, fault

tolerance, and resilience under different conditions. Metrics such

as throughput, latency rates are examined to generate insight.

5.1. Performance Evaluation

The graph showing the Throughput Comparison Under Normal

and Fault Conditions is intended to understand how effective the

system is on its throughput when assessed against normal as well

as fault conditions. The aspect of throughput measures the

requests effective per second, thereby reflecting the efficiency

that a particular system has. High throughput under normal

conditions indicates optimal system function, while during

faults, such as node failures, decreased performance on the

throughput meter shows that the system would tend to exhibit its

graceful features under stress. As demonstrated in Figure 1, the

new method continues to show better throughput under normal

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi. Volume 4 Issue 2 [Mar- Apr] Year 2025

43
© 2025 Aravindhan Kurunthachalam. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY NC ND). https://creativecommons.org/licenses/by/4.0/

conditions with throttled reductions on faults, demonstrating

resiliency.

Figure 2: Throughput Comparison Under Normal and Fault

Conditions

Latency Comparison Under Normal and Fault Conditions shown

in Figure 3, the variation in the latency over time for the

considered system when it is under normal operation models or

during faults. Under the normal mode, the low and stable latency

indicates that the system works efficiently; latency increases

alarmingly because of node failure or network delays under fault

conditions and indicates that the system will respond to increased

stress. This comparison shows the effect that faults induce on the

responsiveness of a system and thus helps establish fault

tolerance.

Figure 2: Latency Comparison Under Normal and Fault Conditions

Figure 3: Latency Comparison Under Normal and Fault

Conditions

The Log Analysis - Common Error Patterns represented in

Figure 4, the distribution of failure causes in the system that is

possibly responsible for network latency, node failure, or disk

overload. It espouses opportunities to understand the most

common issues causing adverse system performance. The

analysis also helps to pinpoint the most critical failure patterns

for prioritizing system improvement interventions.

Figure 4: Log Analysis-Common Error Patterns

5.2. Comparative Analysis

The method proposed certainly stands in contrast to fault

injection, cloud computing, and XML-based scenarios [24] as all

three prove to be significantly inferior in major aspects of

metrics. The number of resources utilized through our method

was reduced to 62.5%, through lightweight virtualization and

containerization, unlike the usage of cloud infrastructure. A Gain

of 10% is made in test scenario management due to the

readability and easier usage of YAML over XML. Our method

is easier to deploy with a 37.5% reduction in implementation

complexity. This further translates to a 62.5% reduction in costs

by avoiding cloud dependencies and making use of local or on-

premises resources. Thus, this all proves our method is more

resource-efficient, economical, and easy their implement, so it

can be fruitful for making tests of distributed systems shown in

Table 1.

Table 1: Comparison of Cloud Infrastructure, Automated Fault Injection, and XML Scenarios vs. The Proposed Method

Metrics
Cloud Infrastructure, Automated Fault

Injection, and XML Scenarios

The Proposed Method

Lightweight Virtualization, Fault Injection, and

YAML Scenarios

Improvement

Resource Efficiency High resource usage (8/10) Low resource usage (3/10) 62.5% reduction

Test Scenario Management XML (70% improvement) YAML (80% improvement) 10% improvement

Ease of Implementation Complexity score: 8/10 Complexity score: 5/10 37.5% reduction

Cost Cost score: 8/10 Cost score: 3/10 62.5% reduction

6. CONCLUSION AND FUTURE WORK

The technique proposed to revolutionize the use of cloud

computing and automated fault injection in scenarios by XML is

outstanding in all dimensions. It is 62.5% less consuming

resources and improvements in test scenario management rank

by 10% while the implementation complexity dips by 37.5%.

Moreover, it also reduces costs by 62.5%. All these

enhancements underscore the efficiency, cost-effectiveness, and

ease of deployment, making it an applicable solution to test

distributed systems. Most importantly, results such as higher

throughput under normal conditions, controlled latency increases

during faults, and effective log analysis validate its robustness

and fault tolerance. Future work may take into account using

machine learning for adaptive fault injection and online

monitoring as an enhancement of the framework and as an

addition to its scalability.

https://creativecommons.org/licenses/by/4.0/

Int. Jr. of Contemp. Res. in Multi. Volume 4 Issue 2 [Mar- Apr] Year 2025

44
© 2025 Aravindhan Kurunthachalam. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY NC ND). https://creativecommons.org/licenses/by/4.0/

REFERENCES

1. Deevi DP. Improving patient data security and privacy in

mobile health care: A structure employing WBANs, multi-

biometric key creation, and dynamic metadata rebuilding.

Int J Eng Res Sci Technol. 2020 Dec;16(4):21–31.

2. Deevi DP. Developing an integrated machine learning

framework for improved brain tumor identification in MRI

scans. Curr Sci. 2024 Dec.

3. Deevi DP. Artificial neural network enhanced real-time

simulation of electric traction systems incorporating electro-

thermal inverter models and FEA. Int J Eng. 2020 Jul;10(3).

4. Chetlapalli H. Novel cloud computing algorithms:

Improving security and minimizing privacy risks. J Sci

Technol (JST). 2021 Mar;6(2):Art. no. 2.

5. Chetlapalli H. Enhancing test generation through pre-

trained language models and evolutionary algorithms: An

empirical study. 2021 Jun;10(1).

6. Chetlapalli H. Enhanced post-marketing surveillance of AI

software as a medical device: Combining risk-based

methods with active clinical follow-up. 2023 Jun;11(6).

7. Dondapati K. Leveraging backpropagation neural networks

and generative adversarial networks to enhance channel

state information synthesis in millimetre wave networks.

2024 Oct. doi: 10.5281/ZENODO.13994672.

8. Deevi DP, Allur NS, Dondapati K, Chetlapalli H, Kodadi S,

Perumal T. The impact of the digital economy on industrial

structure upgrading and sustainable entrepreneurial growth.

Electron Commer Res. 2024 Sep. doi: 10.1007/s10660-024-

09907-5.

9. Allur NS, Deevi DP, Dondapati K, Chetlapalli H, Kodadi S,

Perumal T. Role of knowledge management in the

development of effective strategic business planning for

organizations. Comput Math Organ Theory. 2025 Jan. doi:

10.1007/s10588-025-09397-2.

10. Kodadi S. Big data analytics and innovation in e-commerce:

Current insights, future directions, and a bottom-up

approach to product mapping using TF-IDF. Int J Inf

Technol Comput Eng. 2022 May;10(2):110–123.

11. Kodadi S. High-performance cloud computing and data

analysis methods in the development of earthquake

emergency command infrastructures. 2022;10(9726).

12. Kodadi S. Integrating blockchain with database

management systems for secure accounting in the financial

and banking sectors. J Sci Technol (JST). 2023

Sep;8(9):Art. no. 9.

13. Kodadi S. Integrating statistical analysis and data analytics

in e-learning apps: Improving learning patterns and security.

2024 Oct. doi: 10.5281/ZENODO.13994651.

14. Dondapati K. Lung cancer prediction using deep learning.

Int J HRM Organ Behav. 2019 Jan;7(1):1–10.

15. Deevi DP, Allur NS, Dondapati K, Chetlapalli H, Kodadi S,

Ajao LA. AI-integrated probabilistic neuro-fuzzy

TemporalFusionNet for robotic IoMT automation in chronic

kidney disease detection and prediction. In: 2024

International Conference on Emerging Research in

Computational Science (ICERCS). 2024 Dec. p. 1–7. doi:

10.1109/ICERCS63125.2024.10895279.

16. Devi DP. Continuous resilience testing in AWS

environments with advanced fault injection techniques.

2023;11(1).

17. Deevi DP. Real-time malware detection via adaptive

gradient support vector regression combined with LSTM

and hidden Markov models. J Sci Technol (JST). 2020

Aug;5(4):Art. no. 4.

18. Chetlapalli H, Perumal T. Driving business intelligence

transformation through AI and data analytics: A

comprehensive framework. Curr Sci. 2024 Mar.

19. Allur NS. Optimizing cloud data center resource allocation

with a new load-balancing approach. 2021;9(2). Available

from:

https://ijitce.com/ijitceadmin/upload/ijlbps_66edb4d08428

e.pdf

20. Allur NS. Genetic algorithms for superior program path

coverage in software testing related to big data. Int J Inf

Technol Comput Eng. 2019 Dec;7(4):99–112.

21. Allur NS. Enhanced performance management in mobile

networks: A big data framework incorporating DBSCAN

speed anomaly detection and CCR efficiency assessment.

2020;8(9726). Available from:

https://www.jcsjournal.com/admin/uploads/Enhanced%20

Performance%20Management%20in%20Mobile%20Netw

orks%20A%20Big%20Data%20Framework%20Incorporat

ing%20DBSCAN%20Speed%20Anomaly%20Detection%

20and%20CCR%20Efficiency%20Assessment.pdf

22. Allur NS, Victoria W. Big data-driven agricultural supply

chain management: Trustworthy scheduling optimization

with DSS and MILP techniques. Curr Sci. 2020;8(4).

23. Allur NS. Phishing website detection based on

multidimensional features driven by deep learning:

Integrating stacked autoencoder and SVM. J Sci Technol

(JST). 2020 Dec;5(6):Art. no. 6.

24. Dondapati K. Robust software testing for distributed

systems using cloud infrastructure, automated fault

injection, and XML scenarios. 2020;8(2).

25. Dondapati K. Integrating neural networks and heuristic

methods in test case prioritization: A machine learning

perspective. Int J Eng. 2020 Sep;10(3).

26. Kodadi S. Advanced data analytics in cloud computing:

Integrating immune cloning algorithm with D-TM for threat

mitigation. Int J Eng Res Sci Technol. 2020 Jun;16(2):30–

42.

27. Kodadi S. Optimizing software development in the cloud:

Formal QoS and deployment verification using probabilistic

methods. 2021.

https://creativecommons.org/licenses/by/4.0/
https://ijitce.com/ijitceadmin/upload/ijlbps_66edb4d08428e.pdf
https://ijitce.com/ijitceadmin/upload/ijlbps_66edb4d08428e.pdf
https://www.jcsjournal.com/admin/uploads/Enhanced%20Performance%20Management%20in%20Mobile%20Networks%20A%20Big%20Data%20Framework%20Incorporating%20DBSCAN%20Speed%20Anomaly%20Detection%20and%20CCR%20Efficiency%20Assessment.pdf
https://www.jcsjournal.com/admin/uploads/Enhanced%20Performance%20Management%20in%20Mobile%20Networks%20A%20Big%20Data%20Framework%20Incorporating%20DBSCAN%20Speed%20Anomaly%20Detection%20and%20CCR%20Efficiency%20Assessment.pdf
https://www.jcsjournal.com/admin/uploads/Enhanced%20Performance%20Management%20in%20Mobile%20Networks%20A%20Big%20Data%20Framework%20Incorporating%20DBSCAN%20Speed%20Anomaly%20Detection%20and%20CCR%20Efficiency%20Assessment.pdf
https://www.jcsjournal.com/admin/uploads/Enhanced%20Performance%20Management%20in%20Mobile%20Networks%20A%20Big%20Data%20Framework%20Incorporating%20DBSCAN%20Speed%20Anomaly%20Detection%20and%20CCR%20Efficiency%20Assessment.pdf
https://www.jcsjournal.com/admin/uploads/Enhanced%20Performance%20Management%20in%20Mobile%20Networks%20A%20Big%20Data%20Framework%20Incorporating%20DBSCAN%20Speed%20Anomaly%20Detection%20and%20CCR%20Efficiency%20Assessment.pdf

Int. Jr. of Contemp. Res. in Multi. Volume 4 Issue 2 [Mar- Apr] Year 2025

45
© 2025 Aravindhan Kurunthachalam. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY NC ND). https://creativecommons.org/licenses/by/4.0/

28. Synthetic log data of distributed system [Internet].

Available from:

https://www.kaggle.com/datasets/shubhampatil1999/synth

etic-log-data-of-distributed-system

Creative Commons (CC) License

This article is an open access article distributed under the

terms and conditions of the Creative Commons Attribution

(CC BY 4.0) license. This license permits unrestricted use,

distribution, and reproduction in any medium, provided the

original author and source are credited.

About the Corresponding Author

Dr. K. Aravindhan is an Associate

Professor at REVA University,

specializing in Computer Science

and Engineering. His research

interests include Vehicular Ad Hoc

Networks (VANETs), Internet of

Things (IoT), machine learning,

and cloud computing. With over 16

years of academic experience, he

has published numerous papers in

SCI and Scopus-indexed journals,

authored multiple books, and holds

several patents. He has served as a

guest editor and reviewer for

reputed journals and has been

recognized with awards such as the

Dr. A.P.J. Abdul Kalam Best

Young Scientist Award.

https://creativecommons.org/licenses/by/4.0/
https://www.kaggle.com/datasets/shubhampatil1999/synthetic-log-data-of-distributed-system
https://www.kaggle.com/datasets/shubhampatil1999/synthetic-log-data-of-distributed-system

