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Abstract Manuscript Information 

 

As cyber threats evolved, the necessity of secure and effective sharing of threat intelligence in 

cloud environments has developed ever more urgently. Centralized methods are confronted with 

serious limitations, such as risks of data integrity, transparency issues, and scalability limitations. 

It introduces the Enhancing Security Using Blockchain paper, which has been cited for 

overcoming the aforementioned problems. This system leverages blockchain technology to 

achieve decentralized threat intelligence sharing, as well as to provide tampering evidence and 

transparency. The proposed method is to secure the data on an Ethereum blockchain while 

utilizing ABE for fine-grained access control to ensure that only permissible persons can access 

sensitive data. Smart contracts also automate the verification process and transactions to be more 

secure and efficient. Machine learning methods such as logistic regression, random forest, and 

CNNs are used to capture cyber threat patterns and optimize risk detection. Experimental 

verification indicates that the ensemble model is 92% accurate, surpassing traditional security 

measures in detecting cyber-attacks and maintaining data integrity. Moreover, trust between 

parties is promoted by blockchain, preventing data manipulation and enabling transaction 

processes with low latency. These advantages notwithstanding, there are future studies in 

computational overhead, government regulation-compliance, and existing cloud infrastructure 

integration as their scope. The emphasis of this research will be on how to improve cybersecurity 

through the sharing of threat intelligence using blockchain with secure, transparent, and scalable 

methods of managing such threats in cloud environments. The future work will focus on 

blockchain storage optimization, improving computational efficiency accompanied by better 

consensus schemes for scalability and acceptance. 

▪ ISSN No: 2583-7397 

▪ Received: 29-01-2025 

▪ Accepted: 19-02-2025 

▪ Published: 18-03-2025 

▪ IJCRM:4(2); 2025: 53-59 

▪ ©2025, All Rights Reserved 

▪ Plagiarism Checked: Yes 

▪ Peer Review Process: Yes 

How to Cite this Article 

Srinivasan K, Chauhan GS, Jadon R, 

Budda R, Gollapalli VST, Prema R. 

Threat intelligence sharing in cloud 

environments: enhancing security 

using blockchain. Int J Contemp Res 

Multidiscip. 2025;4(2):53-59. 

Access this Article Online 

www.multiarticlesjournal.com 

 

KEYWORDS: Blockchain Security, Threat Intelligence Sharing, Cloud Security, Attribute-Based Encryption, Smart Contracts, 

Cyber Threat Detection. 
 

 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.15052446


Int. Jr. of Contemp. Res. in Multi.    Volume 4 Issue 2 [Mar- Apr] Year 2025 
 

54 
© 2025 Kannan Srinivasan, Guman Singh Chauhan, Rahul Jadon, Rajababu Budda, Venkata Surya Teja Gollapalli, Prema R. This is an open-access article 

distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY NC ND). https://creativecommons.org/licenses/by/4.0/  

 

1. INTRODUCTION 

In line with the adoption of cloud computing, organizations 

depend on threat intelligence sharing to boost their cybersecurity 

walls (Bobba 2021) [5] sharing effective threat intelligence would 

lead to early detection and mitigation of cyber threat related 

incidents, as well as lower the chances of a great mass attack 

resulting from one attack (Devarajan et al. 2024) [6]. However, 

the secure, reliable, and tamper-proof exchange of threat 

intelligence remains a significant challenge in cloud 

environments (Gudivaka et al. 2024) [8]. Significant problems 

associated with threat-intelligence sharing include data integrity 

issues, unauthorized access, lack of trust among parties, and an 

array of cyber threats, such as manipulation and, most 

importantly, breaches of data (Gollavilli 2022) [7] Common 

pitfalls festering in centralized storage and communication 

systems include single points of failure and security risks in 

large-scale threat intelligence networks without putting much 

stress on the effectiveness of these centralized systems 

(Kadiyala, Alavilli, and Alfa 2025) [8]. 

These threat-sharing mechanisms include centralized databases, 

cloud-based repositories, and private networks. However, these 

mechanisms have to face external tremendous challenges 

(Ayyadurai 2020) [3]. Centralized databases are vulnerable to 

unauthorized changes and data-tampering attacks and bear issues 

of integrity (Kodadi 2020) [12]. Trust issues are set in as 

organizations never choose to share sensitive threat data due to 

the lack of transparency of traditional systems and strong 

security guarantees (Sareddy and Khan 2025) [18]. Moreover, 

these solutions do not scale and perform well enough to 

effectively address the gathering and distribution of threat 

intelligence on a large, real-time scale (Srinivasan and Awotunde 

2021) [19]. In order to resolve the constraints above, a more secure 

and transparent, and highly scalable solution for information-

sharing solutions needs to be created for better threat intelligence 

sharing (Valivarthi. and Kurniadi. 2025) [20]. 

The research proffers that Enhanced Security Using Blockchain 

for threat intelligence sharing in cloud environments could solve 

the challenges. The decentralized and immutable ledger of 

Blockchain guarantees data integrity, transparency, and secured 

access control. Using smart contracts and consensus mechanisms 

with cryptographic techniques, blockchain increases trust and 

prevents unauthorized modification while allowing effective 

threat intelligence sharing among cloud-based organizations. 

This significantly enhances resilience to cyber threats and allows 

organizations to work together to ensure that cyber threats are 

tackled as efficiently as possible. 

 

1.1 Key Contribution 

This study proposes a secure, decentralized, and scalable threat 

intelligence sharing system based on blockchain and AI-enabled 

threat analysis. 

▪ Blockchains were created to distribute threat intelligence 

data securely in cloud environments.  

▪ Integrated Ethereal blockchain for secured storage and 

Attribute-Based Encryption (ABE) for access control. 

▪ Smart contracts were used to achieve automatic verification 

and transaction processes with guarantees for confidentiality 

and transparency. 

▪ Machine learning models including logistic regression, 

random forest, and CNNs were deployed to analyze cyber 

threat patterns and detect risks. 

▪ Experimental results proved the better performance of the 

ensemble model with standard security mechanisms against 

accuracy and data integrity compromises.  

 

Section 2 explains developments in threat intelligence sharing, 

with discussion on blockchain and AI models. Proposition and 

problem statement are given in Section 3, where data integrity, 

trust, and scalability issues are discussed. The ABE-Based 

Blockchain Framework for secure sharing of threat intelligence 

is proposed in Section 4. Evaluation of certain performance 

metrics like TPS, latency, and storage overhead is done in 

Section 5, while Section 6 concludes with future research 

directions about scalability and improvements in encryption. 

 

2. LITERATURE REVIEW 

Peddi and Leaders (2021) [15] suggested that VCC should have 

cryptographic techniques, trust management models, and 

intrusion detection systems. In such cases, the methodologies 

suffer from limitations like extremely high computational 

overheads, issues with scalability, and their vulnerability to 

changing patterns in cyber threats. Peddi, Narla, and Valivarthi 

(2019) [16] used AI techniques such as Logistic Regression, 

Random Forest, and CNN in predictive modeling for geriatric 

health care, with limitations such as data quality issues, 

interpretability of the model, and heavy computational resource 

demand.  

The anomalies in the cloud environment for e-commerce 

transaction security are further enhanced by other Machine 

learning-based anomaly detection and predictive modeling 

approaches detailed in Ayyadurai (2022) [4]. However, it is 

challenged by data privacy, high computational costs, and the 

need for strong encryption and access control. Jyothi Bobba 

(2024) [9] proposed that AI techniques, including regression 

analyses for predictive maintenance and k-means clustering for 

anomaly detection, would improve the security of financial data 

in cloud environments; however, there are challenges, mainly 

computational complexity, false positives in anomaly detection, 

and data privacy. 

Nagarajan (2024) [14] compared cloud versus traditional bank 

security especially encryption, authentication, and compliance, 

limitations set by evolving cyber threats and third-party 

vulnerabilities. The use of the Nudge theory in combination with 

blockchain for secure, transparent financial transactions in 

learning to health insurance was by Kodadi (2023) [13]. 

Integration, regulatory compliance, and adoption hurdles impede 

it. 

 

3. Problem Statement 

For instance, cybersecurity methods such as cryptographic, AI 

models, and blockchain solutions have great promising 
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advancements; however, certain limitations do exist in those 

solutions (Kethu and N 2021) [11]. Cryptographic and trust 

management models often have many challenges like high 

computational overhead, scalability issues, and open-ended 

vulnerability to future emerging threats (Alagarsundaram 2024) 
[1]. AI approaches, which incorporate machine-learning anomaly 

detection and predictive modeling, are hindered by the quality of 

the data, lack of interpretability of the results, and high 

computational requirements (Allur 2020) [2]. Blockchain security 

solutions, raise transparency and security; however, they face 

inherent challenges with integration, regulation, and adoption 

hurdles (Yallamelli 2019) [21]. Many of these challenges show 

that it is increasingly pertinent for security frameworks to 

advance to counter the evolving security threats arising in the 

cloud environment. 

 

4. Framework for Threat Intelligence Sharing on the 

Blockchain  

The framework proposed here is intended for secure sharing of 

threat intelligence about cloud environments using blockchain 

and encryption techniques. The process would include data 

collection-the collection of threat intelligence from various 

sources- and preprocessing with one-hot encoded categorical 

data for a structured format. The processed data then integrates 

into the Ethereum blockchain to ensure it is tamper-proof and 

decentralized is displayed in Figure (1), 

 

 
 

Figure 1: Secure Threat Intelligence Sharing Using Blockchain and Encryption 
 

Restricting confidentiality, Attribute-Based Encryption (ABE) is 

applied to access only authorized entities. Finally, the 

performance evaluation is done by which the efficiency, security, 

and scalability of the framework are measured. Thus, using the 

immutability of blockchain and the access control possible with 

ABE strengthens the data integrity, trust, and security for cloud-

based threat intelligence sharing. 

 

4.1 Data Collection 

The Cyber Threat Intelligence Dataset supports the detection, 

diagnosis, and mitigation of cyber threats based on network 

traffic data, text content, and entity relationships. It features 

primary fields like id, text, entries, relations, diagnosis, and 

solution. This dataset is useful for applications such as threat 

detection, intelligence analysis, incident response, network 

monitoring, and research (Ramoliya Fenil, n.d.) [17].  

 

4.2 Pre-processing Using One-Hot Encoding 

One-hot encoding is a preprocessing technique that converts 

categorical data into numerical form that can be read by 

machines. Instead of assigning categories to random numbers, it 

produces a binary vector representation such that no spurious 

ordinal relationships are created. Mathematical Representation 

Let a categorical variable have C different values. Each value is 

encoded in a vector of size as presented in Eq. (1), 

 

𝑏𝑖 = {
1,  if the category at position 𝑖 is present 

0,  otherwise 
 ……….. (1) 

 

Therefore, a categorical variable X with possible values {c1, c2, 

cC} is converted as Eq. (2), 

 

𝑂(𝑋) = [𝛿(𝑋, 𝑐1), 𝛿(𝑋, 𝑐2), … , 𝛿(𝑋, 𝑐𝐶)] ………………….. (2) 

 

where the indicator function δ (X, ci) is described in Eq. (3), 

 

𝛿(𝑋, 𝑐𝑖) = {
1,  if 𝑋 = 𝑐𝑖
0,  otherwise 

 ……………………………… (3) 
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4.3 Ethereum Blockchain Integration for Sharing Threat 

Intelligence 

Ethereum Blockchain provides secure, transparent, and tamper-

proof storage of cyber threat intelligence. Through the use of 

cryptographic methods, it does not allow any data tampering and 

provides authenticity. The fundamental processes in this 

integration are as follows, 

 

4.3.1 Hashing Data for Integrity 

Prior to storage of threat intelligence information, it is hashed 

into a cryptographic hash to guarantee immutability. Hashing 

guarantees that any slight alteration of the data will yield a totally 

different hash, and thus, unauthorized alterations are detectable 

as specified in Eq. (4), 

 

𝐻(𝐷𝑖) = Hash Function (𝐷𝑖) ………………………….. (4) 

 

Where, Di is the original data, H(Di) is the cryptographic hash 

(e.g., SHA-256). 

 

4.3.2 Digital Signature for Authenticity 

In order to authenticate the data, a digital signature is created 

with the help of the sender's private key. Based on this process, 

receivers can authenticate the identity of the sender with their 

public key so that the data cannot be changed in transit as 

indicated in Eq. (5) 

 

Sign𝑠𝑘(𝐻(𝐷𝑖)) …………………………………………… (5) 

 

Where, sk is the private key of the sender, Signsk(H(Di)) is the 

digital signature. 

 

4.3.3 Ethereum Blockchain Transaction and Validation 

After hashing and signing the data, it is appended as a transaction 

to the Ethereum Blockchain. This ensures immutability, 

prohibits unauthorized tampering, and locks threat intelligence 

data in the blockchain is stated in Eq. (6), 

 

𝑇𝑖 = 𝐻(𝐷𝑖) + Sign𝑠𝑘(𝐻(𝐷𝑖)) ……………………………… (6) 

 

Where, H(Di) is the cryptographic hash of data, Signsk(H(Di)) is 

the digital signature based on the sender's private key. To provide 

security, the transaction is checked through a consensus 

mechanism, like PoW or PoS. Transactions are then combined 

into a block as specified in Eq. (7) 

 

𝐵𝑗 = [𝑇1, 𝑇2, … , 𝑇𝑛] + 𝐻(𝐵𝑗−1)…………………………… (7) 

 

Where Bj is a new block of several transactions, H(Bj−1) is the 

previous block's hash, to create continuity. 

 

4.4 Attribute-Based Encryption for Secure Sharing 

ABE protects data by encrypting it against a predefined set of 

attributes such that only authorized users with the same attributes 

can decrypt it. 

4.4.1 Encryption of Data 

The encryption process converts the plaintext message to 

ciphertext is given as Eq. (8), 

 

𝐶 = 𝐸𝑝𝑘(𝑀, 𝐴)……………………………………… (8) 

 

Where, C is ciphertext (encrypted data), Epk is the public key 

encryption function, M is the original message (threat 

intelligence or sensitive information), A is access control policy 

attributes set. 

 

4.4.2 Decryption Process 

A user who possesses a corresponding attribute set A′ can 

decrypt the ciphertext with their secret key. When A′ meets the 

access policy, the user successfully restores M, otherwise 

decryption will fail is modeled as Eq. (9), 

 

𝑀 = 𝐷𝑠𝑘(𝐶, 𝐴
′) ………………………………………… (9) 

 

Where, Dsk is the decryption function with the secret key sk, A′ 

is the user's attribute set. 

 

5. RESULTS AND DISCUSSION 

The analysis indicates that as the TPS moves up, greater 

efficiency in the transaction processing improves with lesser 

latency on the blockchains. Initially, due to network congestion 

at higher transaction processing speeds, latency is high but 

begins to decline and stabilizes optimally. Such modern 

blockchains like Hyperledger Fabric and Ethereum 2.0 thus use 

different advanced consensus mechanisms including PoS and 

PBFT to expedite processed blocks, though under conditions of 

extreme TPS, the network will still be under pressure and thus 

will require some other scaling techniques. Then in addition, 

starting at high transaction speeds, the relatively higher burden 

of storage caused by all the extra cryptographic signatures, 

metadata, and transaction records is increased. This represents a 

trade-off between scalability and storage efficiency, emphasizing 

the need for optimized storage management in blockchain 

systems. 

 

5.1 Relationship Between Transaction Throughput and 

Blockchain Latency 

Graphically representing these characteristics is the inverse 

relationship that exists between TPS and Blockchain Latency: 

increased TPS generally translates into decreased latency. The 

initial trend shows latency pivoting back and forth at higher 

levels (50-100 TPS) ~0.85s to~0.75s); this behavior is accounted 

for by heavy network congestion and slow block validation. 

However, as the TPS rises (125-200 range), latency begins to 

decline regularly by amounts around~0.10s from the previous 

values of (~0.65s to~0.55s), one more time signaling a better 

transaction process. At the highest TPS levels (225-250), latency 

rates reach the lowest values (~0.50s) to mean that the optimized 

blockchain performance, as seen in Figure (2), is being achieved. 
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Figure 2: Impact of Transaction Throughput on Blockchain Latency 
 

Nevertheless, the decrease in performance varies non-linearly, 

indicating that the efficiency is enhanced at heightened levels of 

TPS, but the performance improvement has diminishing returns 

against the constraints of the system. This characteristic is 

normal to modern blockchains such as Hyperledger Fabric and 

Ethereum 2.0, where good consensus mechanisms (PoS, PBFT) 

are helping to reduce the impact of latencies. However, an 

excessively high level of TPS may still strain the network, 

requiring further optimizations such as sharding or layer-2 

scaling for efficient performance. 

5.2 Blockchain Storage Overhead Analysis Based on 

Transaction Throughput 

Represented by the figure is a trend relationship between TPS 

and blockchain storage overhead (%). There is consistent 

increase of storage overhead with increase in TPS, but it is not a 

straight line. This is because with every additional transaction 

being executed, more and more overhead such as cryptographic 

signatures, metadata, and transactions themselves are 

accumulated in blockchain as shown in Figure (3), 

 

 
 

Figure 3: Impact of Transaction Throughput on Blockchain Storage Overhead 
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The storage cost starts at almost 13% for low TPS values but 

builds up to more than 16% when the TPS value is raised to 250. 

This makes it evident that the greater the transaction rates, the 

more the accumulation of storage requirements, thus implying 

the trade-off between the scalability of a blockchain and storage 

efficiency. 

 

6. CONCLUSION AND FUTURE WORKS 

The paper on blockchain-based threat intelligence sharing in 

clouds addresses significant obstacles to integrity, trust, and 

scalability. Security and transparency are gained with a 

controlled kind of access using an ABE-Based Blockchain 

Framework that integrates Ethereum with an Attribute-Based 

Encryption scheme and smart contracts. Evaluating the 

experiment shows that it provides good damage control towards 

data tampering and more trust-building among entities and 

ensures low-latency transaction processing. Besides using 

machine learning like binary, and random forest, CNNs would 

give the possibility of studying cyberthreat patterns thus 

increasing the detection accuracy of risks. The analysis showed 

that while blockchain has been found to work in improving cloud 

security, there are some hurdles posed by computing overheads, 

conformity with regulations, and existing cloud infrastructure. 

Future directions will focus on optimizing blockchain to store 

data efficiently, reduce computational costs, and realize an 

improved consensus mechanism for high scalability. Further, 

hybrid architectures of blockchain will be considered for future 

inquiries to address the balanced trade-off between 

decentralization and efficiency as well as privacy-preserving 

techniques such as homomorphic encryption in protecting 

sensitive threat intelligence data. Adapting learning models for 

real-time threat detection and response will also be an 

instrumental focus. Finally, collaboration with the industry and 

practical implementation in real-world cloud security systems 

will be considered for assessing the effectiveness of large-scale 

framework deployment. 
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